import numpy as np import torch import torch.nn as nn import scipy.ndimage from skimage import measure import torch.nn.functional as F from diso import DiffDMC from einops import repeat from triposg.utils.typing import * def generate_dense_grid_points_gpu(bbox_min: torch.Tensor, bbox_max: torch.Tensor, octree_depth: int, indexing: str = "ij"): length = bbox_max - bbox_min num_cells = 2 ** octree_depth device = bbox_min.device x = torch.linspace(bbox_min[0], bbox_max[0], int(num_cells), dtype=torch.float16, device=device) y = torch.linspace(bbox_min[1], bbox_max[1], int(num_cells), dtype=torch.float16, device=device) z = torch.linspace(bbox_min[2], bbox_max[2], int(num_cells), dtype=torch.float16, device=device) xs, ys, zs = torch.meshgrid(x, y, z, indexing=indexing) xyz = torch.stack((xs, ys, zs), dim=-1) xyz = xyz.view(-1, 3) grid_size = [int(num_cells), int(num_cells), int(num_cells)] return xyz, grid_size, length def find_mesh_grid_coordinates_fast_gpu(occupancy_grid, n_limits=-1): core_grid = occupancy_grid[1:-1, 1:-1, 1:-1] occupied = core_grid > 0 neighbors_unoccupied = ( (occupancy_grid[:-2, :-2, :-2] < 0) | (occupancy_grid[:-2, :-2, 1:-1] < 0) | (occupancy_grid[:-2, :-2, 2:] < 0) # x-1, y-1, z-1/0/1 | (occupancy_grid[:-2, 1:-1, :-2] < 0) | (occupancy_grid[:-2, 1:-1, 1:-1] < 0) | (occupancy_grid[:-2, 1:-1, 2:] < 0) # x-1, y0, z-1/0/1 | (occupancy_grid[:-2, 2:, :-2] < 0) | (occupancy_grid[:-2, 2:, 1:-1] < 0) | (occupancy_grid[:-2, 2:, 2:] < 0) # x-1, y+1, z-1/0/1 | (occupancy_grid[1:-1, :-2, :-2] < 0) | (occupancy_grid[1:-1, :-2, 1:-1] < 0) | (occupancy_grid[1:-1, :-2, 2:] < 0) # x0, y-1, z-1/0/1 | (occupancy_grid[1:-1, 1:-1, :-2] < 0) | (occupancy_grid[1:-1, 1:-1, 2:] < 0) # x0, y0, z-1/1 | (occupancy_grid[1:-1, 2:, :-2] < 0) | (occupancy_grid[1:-1, 2:, 1:-1] < 0) | (occupancy_grid[1:-1, 2:, 2:] < 0) # x0, y+1, z-1/0/1 | (occupancy_grid[2:, :-2, :-2] < 0) | (occupancy_grid[2:, :-2, 1:-1] < 0) | (occupancy_grid[2:, :-2, 2:] < 0) # x+1, y-1, z-1/0/1 | (occupancy_grid[2:, 1:-1, :-2] < 0) | (occupancy_grid[2:, 1:-1, 1:-1] < 0) | (occupancy_grid[2:, 1:-1, 2:] < 0) # x+1, y0, z-1/0/1 | (occupancy_grid[2:, 2:, :-2] < 0) | (occupancy_grid[2:, 2:, 1:-1] < 0) | (occupancy_grid[2:, 2:, 2:] < 0) # x+1, y+1, z-1/0/1 ) core_mesh_coords = torch.nonzero(occupied & neighbors_unoccupied, as_tuple=False) + 1 if n_limits != -1 and core_mesh_coords.shape[0] > n_limits: print(f"core mesh coords {core_mesh_coords.shape[0]} is too large, limited to {n_limits}") ind = np.random.choice(core_mesh_coords.shape[0], n_limits, True) core_mesh_coords = core_mesh_coords[ind] return core_mesh_coords def find_candidates_band(occupancy_grid: torch.Tensor, band_threshold: float, n_limits: int = -1) -> torch.Tensor: """ Returns the coordinates of all voxels in the occupancy_grid where |value| < band_threshold. Args: occupancy_grid (torch.Tensor): A 3D tensor of SDF values. band_threshold (float): The threshold below which |SDF| must be to include the voxel. n_limits (int): Maximum number of points to return (-1 for no limit) Returns: torch.Tensor: A 2D tensor of coordinates (N x 3) where each row is [x, y, z]. """ core_grid = occupancy_grid[1:-1, 1:-1, 1:-1] # logits to sdf core_grid = torch.sigmoid(core_grid) * 2 - 1 # Create a boolean mask for all cells in the band in_band = torch.abs(core_grid) < band_threshold # Get coordinates of all voxels in the band core_mesh_coords = torch.nonzero(in_band, as_tuple=False) + 1 if n_limits != -1 and core_mesh_coords.shape[0] > n_limits: print(f"core mesh coords {core_mesh_coords.shape[0]} is too large, limited to {n_limits}") ind = np.random.choice(core_mesh_coords.shape[0], n_limits, True) core_mesh_coords = core_mesh_coords[ind] return core_mesh_coords def expand_edge_region_fast(edge_coords, grid_size): expanded_tensor = torch.zeros(grid_size, grid_size, grid_size, device='cuda', dtype=torch.float16, requires_grad=False) expanded_tensor[edge_coords[:, 0], edge_coords[:, 1], edge_coords[:, 2]] = 1 if grid_size < 512: kernel_size = 5 pooled_tensor = torch.nn.functional.max_pool3d(expanded_tensor.unsqueeze(0).unsqueeze(0), kernel_size=kernel_size, stride=1, padding=2).squeeze() else: kernel_size = 3 pooled_tensor = torch.nn.functional.max_pool3d(expanded_tensor.unsqueeze(0).unsqueeze(0), kernel_size=kernel_size, stride=1, padding=1).squeeze() expanded_coords_low_res = torch.nonzero(pooled_tensor, as_tuple=False).to(torch.int16) expanded_coords_high_res = torch.stack([ torch.cat((expanded_coords_low_res[:, 0] * 2, expanded_coords_low_res[:, 0] * 2, expanded_coords_low_res[:, 0] * 2, expanded_coords_low_res[:, 0] * 2, expanded_coords_low_res[:, 0] * 2 + 1, expanded_coords_low_res[:, 0] * 2 + 1, expanded_coords_low_res[:, 0] * 2 + 1, expanded_coords_low_res[:, 0] * 2 + 1)), torch.cat((expanded_coords_low_res[:, 1] * 2, expanded_coords_low_res[:, 1] * 2, expanded_coords_low_res[:, 1] * 2+1, expanded_coords_low_res[:, 1] * 2 + 1, expanded_coords_low_res[:, 1] * 2, expanded_coords_low_res[:, 1] * 2, expanded_coords_low_res[:, 1] * 2 + 1, expanded_coords_low_res[:, 1] * 2 + 1)), torch.cat((expanded_coords_low_res[:, 2] * 2, expanded_coords_low_res[:, 2] * 2+1, expanded_coords_low_res[:, 2] * 2, expanded_coords_low_res[:, 2] * 2 + 1, expanded_coords_low_res[:, 2] * 2, expanded_coords_low_res[:, 2] * 2+1, expanded_coords_low_res[:, 2] * 2, expanded_coords_low_res[:, 2] * 2 + 1)) ], dim=1) return expanded_coords_high_res def zoom_block(block, scale_factor, order=3): block = block.astype(np.float32) return scipy.ndimage.zoom(block, scale_factor, order=order) def parallel_zoom(occupancy_grid, scale_factor): result = torch.nn.functional.interpolate(occupancy_grid.unsqueeze(0).unsqueeze(0), scale_factor=scale_factor) return result.squeeze(0).squeeze(0) @torch.no_grad() def hierarchical_extract_geometry(geometric_func: Callable, device: torch.device, bounds: Union[Tuple[float], List[float], float] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25), dense_octree_depth: int = 9, hierarchical_octree_depth: int = 9, ): """ Args: geometric_func: device: bounds: dense_octree_depth: hierarchical_octree_depth: Returns: """ if isinstance(bounds, float): bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds] bbox_min = torch.tensor(bounds[0:3]).to(device) bbox_max = torch.tensor(bounds[3:6]).to(device) bbox_size = bbox_max - bbox_min xyz_samples, grid_size, length = generate_dense_grid_points_gpu( bbox_min=bbox_min, bbox_max=bbox_max, octree_depth=dense_octree_depth, indexing="ij" ) print(f'step 1 query num: {xyz_samples.shape[0]}') grid_logits = geometric_func(xyz_samples.unsqueeze(0)).to(torch.float16).view(grid_size[0], grid_size[1], grid_size[2]) # print(f'step 1 grid_logits shape: {grid_logits.shape}') for i in range(hierarchical_octree_depth - dense_octree_depth): curr_octree_depth = dense_octree_depth + i + 1 # upsample grid_size = 2**curr_octree_depth normalize_offset = grid_size / 2 high_res_occupancy = parallel_zoom(grid_logits, 2) band_threshold = 1.0 edge_coords = find_candidates_band(grid_logits, band_threshold) expanded_coords = expand_edge_region_fast(edge_coords, grid_size=int(grid_size/2)).to(torch.float16) print(f'step {i+2} query num: {len(expanded_coords)}') expanded_coords_norm = (expanded_coords - normalize_offset) * (abs(bounds[0]) / normalize_offset) all_logits = None all_logits = geometric_func(expanded_coords_norm.unsqueeze(0)).to(torch.float16) all_logits = torch.cat([expanded_coords_norm, all_logits[0]], dim=1) # print("all logits shape = ", all_logits.shape) indices = all_logits[..., :3] indices = indices * (normalize_offset / abs(bounds[0])) + normalize_offset indices = indices.type(torch.IntTensor) values = all_logits[:, 3] # breakpoint() high_res_occupancy[indices[:, 0], indices[:, 1], indices[:, 2]] = values grid_logits = high_res_occupancy torch.cuda.empty_cache() mesh_v_f = [] try: print("final grids shape = ", grid_logits.shape) vertices, faces, normals, _ = measure.marching_cubes(grid_logits.float().cpu().numpy(), 0, method="lewiner") vertices = vertices / (2**hierarchical_octree_depth) * bbox_size.cpu().numpy() + bbox_min.cpu().numpy() mesh_v_f = (vertices.astype(np.float32), np.ascontiguousarray(faces)) except Exception as e: print(e) torch.cuda.empty_cache() mesh_v_f = (None, None) return [mesh_v_f] def extract_near_surface_volume_fn(input_tensor: torch.Tensor, alpha: float): """ Args: input_tensor: shape [D, D, D], torch.float16 alpha: isosurface offset Returns: mask: shape [D, D, D], torch.int32 """ device = input_tensor.device D = input_tensor.shape[0] signed_val = 0.0 # add isosurface offset and exclude invalid value val = input_tensor + alpha valid_mask = val > -9000 # obtain neighbors def get_neighbor(t, shift, axis): if shift == 0: return t.clone() pad_dims = [0, 0, 0, 0, 0, 0] # [x_front,x_back,y_front,y_back,z_front,z_back] if axis == 0: # x axis pad_idx = 0 if shift > 0 else 1 pad_dims[pad_idx] = abs(shift) elif axis == 1: # y axis pad_idx = 2 if shift > 0 else 3 pad_dims[pad_idx] = abs(shift) elif axis == 2: # z axis pad_idx = 4 if shift > 0 else 5 pad_dims[pad_idx] = abs(shift) # Apply padding with replication at boundaries padded = F.pad(t.unsqueeze(0).unsqueeze(0), pad_dims[::-1], mode='replicate') # Create dynamic slicing indices slice_dims = [slice(None)] * 3 if axis == 0: # x axis if shift > 0: slice_dims[0] = slice(shift, None) else: slice_dims[0] = slice(None, shift) elif axis == 1: # y axis if shift > 0: slice_dims[1] = slice(shift, None) else: slice_dims[1] = slice(None, shift) elif axis == 2: # z axis if shift > 0: slice_dims[2] = slice(shift, None) else: slice_dims[2] = slice(None, shift) # Apply slicing and restore dimensions padded = padded.squeeze(0).squeeze(0) sliced = padded[slice_dims] return sliced # Get neighbors in all directions left = get_neighbor(val, 1, axis=0) # x axis right = get_neighbor(val, -1, axis=0) back = get_neighbor(val, 1, axis=1) # y axis front = get_neighbor(val, -1, axis=1) down = get_neighbor(val, 1, axis=2) # z axis up = get_neighbor(val, -1, axis=2) # Handle invalid boundary values def safe_where(neighbor): return torch.where(neighbor > -9000, neighbor, val) left = safe_where(left) right = safe_where(right) back = safe_where(back) front = safe_where(front) down = safe_where(down) up = safe_where(up) # Calculate sign consistency sign = torch.sign(val.to(torch.float32)) neighbors_sign = torch.stack([ torch.sign(left.to(torch.float32)), torch.sign(right.to(torch.float32)), torch.sign(back.to(torch.float32)), torch.sign(front.to(torch.float32)), torch.sign(down.to(torch.float32)), torch.sign(up.to(torch.float32)) ], dim=0) # Check if all signs are consistent same_sign = torch.all(neighbors_sign == sign, dim=0) # Generate final mask mask = (~same_sign).to(torch.int32) return mask * valid_mask.to(torch.int32) def generate_dense_grid_points_2( bbox_min: np.ndarray, bbox_max: np.ndarray, octree_resolution: int, indexing: str = "ij", ): length = bbox_max - bbox_min num_cells = octree_resolution x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32) y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32) z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32) [xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing) xyz = np.stack((xs, ys, zs), axis=-1) grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1] return xyz, grid_size, length @torch.no_grad() def flash_extract_geometry( latents: torch.FloatTensor, vae: Callable, bounds: Union[Tuple[float], List[float], float] = 1.01, num_chunks: int = 10000, mc_level: float = 0.0, octree_depth: int = 9, # quality mesh 8,9,10 min_resolution: int = 63, mini_grid_num: int = 4, **kwargs, ): geo_decoder = vae.decoder device = latents.device dtype = latents.dtype # resolution to depth octree_resolution = 2 ** octree_depth resolutions = [] if octree_resolution < min_resolution: resolutions.append(octree_resolution) while octree_resolution >= min_resolution: resolutions.append(octree_resolution) octree_resolution = octree_resolution // 2 resolutions.reverse() resolutions[0] = round(resolutions[0] / mini_grid_num) * mini_grid_num - 1 for i, resolution in enumerate(resolutions[1:]): resolutions[i + 1] = resolutions[0] * 2 ** (i + 1) # 1. generate query points if isinstance(bounds, float): bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds] bbox_min = np.array(bounds[0:3]) bbox_max = np.array(bounds[3:6]) bbox_size = bbox_max - bbox_min xyz_samples, grid_size, length = generate_dense_grid_points_2( bbox_min=bbox_min, bbox_max=bbox_max, octree_resolution=resolutions[0], indexing="ij" ) dilate = nn.Conv3d(1, 1, 3, padding=1, bias=False, device=device, dtype=dtype) dilate.weight = torch.nn.Parameter(torch.ones(dilate.weight.shape, dtype=dtype, device=device)) grid_size = np.array(grid_size) # 2. latents to 3d volume xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype) batch_size = latents.shape[0] mini_grid_size = xyz_samples.shape[0] // mini_grid_num xyz_samples = xyz_samples.view( mini_grid_num, mini_grid_size, mini_grid_num, mini_grid_size, mini_grid_num, mini_grid_size, 3 ).permute( 0, 2, 4, 1, 3, 5, 6 ).reshape( -1, mini_grid_size * mini_grid_size * mini_grid_size, 3 ) batch_logits = [] num_batchs = max(num_chunks // xyz_samples.shape[1], 1) for start in range(0, xyz_samples.shape[0], num_batchs): queries = xyz_samples[start: start + num_batchs, :] batch = queries.shape[0] batch_latents = repeat(latents.squeeze(0), "p c -> b p c", b=batch) # geo_decoder.set_topk(True) geo_decoder.set_topk(False) logits = vae.decode(batch_latents, queries).sample batch_logits.append(logits) grid_logits = torch.cat(batch_logits, dim=0).reshape( mini_grid_num, mini_grid_num, mini_grid_num, mini_grid_size, mini_grid_size, mini_grid_size ).permute(0, 3, 1, 4, 2, 5).contiguous().view( (batch_size, grid_size[0], grid_size[1], grid_size[2]) ) for octree_depth_now in resolutions[1:]: grid_size = np.array([octree_depth_now + 1] * 3) resolution = bbox_size / octree_depth_now next_index = torch.zeros(tuple(grid_size), dtype=dtype, device=device) next_logits = torch.full(next_index.shape, -10000., dtype=dtype, device=device) curr_points = extract_near_surface_volume_fn(grid_logits.squeeze(0), mc_level) curr_points += grid_logits.squeeze(0).abs() < 0.95 if octree_depth_now == resolutions[-1]: expand_num = 0 else: expand_num = 1 for i in range(expand_num): curr_points = dilate(curr_points.unsqueeze(0).to(dtype)).squeeze(0) curr_points = dilate(curr_points.unsqueeze(0).to(dtype)).squeeze(0) (cidx_x, cidx_y, cidx_z) = torch.where(curr_points > 0) next_index[cidx_x * 2, cidx_y * 2, cidx_z * 2] = 1 for i in range(2 - expand_num): next_index = dilate(next_index.unsqueeze(0)).squeeze(0) nidx = torch.where(next_index > 0) next_points = torch.stack(nidx, dim=1) next_points = (next_points * torch.tensor(resolution, dtype=torch.float32, device=device) + torch.tensor(bbox_min, dtype=torch.float32, device=device)) query_grid_num = 6 min_val = next_points.min(axis=0).values max_val = next_points.max(axis=0).values vol_queries_index = (next_points - min_val) / (max_val - min_val) * (query_grid_num - 0.001) index = torch.floor(vol_queries_index).long() index = index[..., 0] * (query_grid_num ** 2) + index[..., 1] * query_grid_num + index[..., 2] index = index.sort() next_points = next_points[index.indices].unsqueeze(0).contiguous() unique_values = torch.unique(index.values, return_counts=True) grid_logits = torch.zeros((next_points.shape[1]), dtype=latents.dtype, device=latents.device) input_grid = [[], []] logits_grid_list = [] start_num = 0 sum_num = 0 for grid_index, count in zip(unique_values[0].cpu().tolist(), unique_values[1].cpu().tolist()): if sum_num + count < num_chunks or sum_num == 0: sum_num += count input_grid[0].append(grid_index) input_grid[1].append(count) else: # geo_decoder.set_topk(input_grid) geo_decoder.set_topk(False) logits_grid = vae.decode(latents,next_points[:, start_num:start_num + sum_num]).sample start_num = start_num + sum_num logits_grid_list.append(logits_grid) input_grid = [[grid_index], [count]] sum_num = count if sum_num > 0: # geo_decoder.set_topk(input_grid) geo_decoder.set_topk(False) logits_grid = vae.decode(latents,next_points[:, start_num:start_num + sum_num]).sample logits_grid_list.append(logits_grid) logits_grid = torch.cat(logits_grid_list, dim=1) grid_logits[index.indices] = logits_grid.squeeze(0).squeeze(-1) next_logits[nidx] = grid_logits grid_logits = next_logits.unsqueeze(0) grid_logits[grid_logits == -10000.] = float('nan') torch.cuda.empty_cache() mesh_v_f = [] grid_logits = grid_logits[0] try: print("final grids shape = ", grid_logits.shape) dmc = DiffDMC(dtype=torch.float32).to(grid_logits.device) sdf = -grid_logits / octree_resolution sdf = sdf.to(torch.float32).contiguous() vertices, faces = dmc(sdf) vertices = vertices.detach().cpu().numpy() faces = faces.detach().cpu().numpy()[:, ::-1] vertices = vertices / (2 ** octree_depth) * bbox_size + bbox_min # Центрируем vertices = vertices - vertices.mean(axis=0) # Масштабируем (например, ×100 — сантиметры) target_scale = 1.0 max_extent = np.max(np.linalg.norm(vertices, axis=1)) scale_factor = target_scale / max_extent vertices = vertices * scale_factor mesh_v_f = (vertices.astype(np.float32), np.ascontiguousarray(faces)) except Exception as e: print(e) torch.cuda.empty_cache() mesh_v_f = (None, None) return [mesh_v_f]