import os import subprocess # Убираем pyenv os.environ.pop("PYENV_VERSION", None) # Установка зависимостей subprocess.run(["pip", "install", "torch", "wheel"], check=True) subprocess.run([ "pip", "install", "--no-build-isolation", "diso@git+https://github.com/SarahWeiii/diso.git" ], check=True) # Импорты (перенесены после установки зависимостей) import gradio as gr import uuid import torch import zipfile import requests import traceback import trimesh import numpy as np from trimesh.exchange.gltf import export_glb from inference_triposg import run_triposg from triposg.pipelines.pipeline_triposg import TripoSGPipeline from briarmbg import BriaRMBG GLTF_PACK = "/tmp/gltfpack" print("Trimesh version:", trimesh.__version__) # Настройки устройства device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 if device == "cuda" else torch.float32 # Загрузка весов weights_dir = "pretrained_weights" triposg_path = os.path.join(weights_dir, "TripoSG") rmbg_path = os.path.join(weights_dir, "RMBG-1.4") if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)): print("📦 Downloading pretrained weights...") url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip" zip_path = "pretrained_models.zip" with requests.get(url, stream=True) as r: r.raise_for_status() with open(zip_path, "wb") as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) print("📦 Extracting weights...") with zipfile.ZipFile(zip_path, "r") as zip_ref: zip_ref.extractall(weights_dir) os.remove(zip_path) print("✅ Weights ready.") # Загрузка моделей pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype) rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device) rmbg_net.eval() # def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25): def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25, octree_depth=9): print(f"[INPUT] face_number={face_number}, guidance_scale={guidance_scale}, num_steps={num_steps}, octree_depth={octree_depth}")# 👈 добавлено_et print("[API CALL] image_path received:", image_path) print("[API CALL] File exists:", os.path.exists(image_path)) temp_id = str(uuid.uuid4()) output_path = f"/tmp/{temp_id}.glb" print("[DEBUG] Generating mesh from:", image_path) try: mesh = run_triposg( pipe=pipe, image_input=image_path, rmbg_net=rmbg_net, seed=42, num_inference_steps = round(float(num_steps)), # 👈 исправлено_et guidance_scale=float(guidance_scale), faces=round(float(face_number)), # 👈 исправлено_et # octree_depth=int(octree_depth), # 👈 добавлено_et octree_depth = round(float(octree_depth)) # 👈 исправлено_et ) if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0: raise ValueError("Mesh generation returned an empty mesh") # 🔧 Пересоздаём Trimesh и гарантируем чистоту геометрии mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, process=True) # ✅ Центрируем модель mesh.apply_translation(-mesh.center_mass) # ✅ Масштабируем к единичному размеру (все модели ~одинаковые) scale_factor = 1.0 / np.max(np.linalg.norm(mesh.vertices, axis=1)) mesh.apply_scale(scale_factor) # ✅ Гарантированно пересчитываем нормали mesh.fix_normals() # print("[DEBUG] Normals present:", mesh.has_vertex_normals) if hasattr(mesh, "vertex_normals"): print("[DEBUG] Normals shape:", mesh.vertex_normals.shape) else: print("[DEBUG] Normals missing.") # 💾 Сохраняем GLB glb_data = mesh.export(file_type='glb') with open(output_path, "wb") as f: f.write(glb_data) print(f"[DEBUG] Mesh saved to {output_path}") return output_path if os.path.exists(output_path) else None except Exception as e: print("[ERROR]", e) traceback.print_exc() return f"Error: {e}" # Интерфейс Gradio demo = gr.Interface( fn=generate, # inputs=gr.Image(type="filepath", label="Upload image"), inputs=[ gr.Image(type="filepath", label="Upload image"), gr.Slider(10000, 150000, step=10000, value=50000, label="Face count"), gr.Slider(1.0, 10.0, step=0.5, value=5.0, label="Guidance Scale"), gr.Slider(10, 100, step=5, value=25, label="Steps"), gr.Slider(6, 9, step=1, value=9, label="Octree Depth"), ], # 👈 добавлено outputs=gr.File(label="Download .glb"), title="TripoSG Image to 3D", description="Upload an image to generate a 3D model (.glb)", ) # Запуск demo.launch()