# -*- coding: utf-8 -*- import os from skimage.morphology import remove_small_objects from skimage.measure import label import numpy as np from PIL import Image import cv2 from torchvision import transforms import torch import torch.nn.functional as F import torchvision.transforms.functional as TF def find_bounding_box(gray_image): _, binary_image = cv2.threshold(gray_image, 1, 255, cv2.THRESH_BINARY) contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) max_contour = max(contours, key=cv2.contourArea) x, y, w, h = cv2.boundingRect(max_contour) return x, y, w, h def load_image(img_path, bg_color=None, rmbg_net=None, padding_ratio=0.1): img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) if img is None: return f"invalid image path {img_path}" def is_valid_alpha(alpha, min_ratio = 0.01): bins = 20 if isinstance(alpha, np.ndarray): hist = cv2.calcHist([alpha], [0], None, [bins], [0, 256]) else: hist = torch.histc(alpha, bins=bins, min=0, max=1) min_hist_val = alpha.shape[0] * alpha.shape[1] * min_ratio return hist[0] >= min_hist_val and hist[-1] >= min_hist_val def rmbg(image: torch.Tensor) -> torch.Tensor: image = TF.normalize(image, [0.5,0.5,0.5], [1.0,1.0,1.0]).unsqueeze(0) result=rmbg_net(image) return result[0][0] if len(img.shape) == 2: num_channels = 1 else: num_channels = img.shape[2] # check if too large height, width = img.shape[:2] if height > width: scale = 2000 / height else: scale = 2000 / width if scale < 1: new_size = (int(width * scale), int(height * scale)) img = cv2.resize(img, new_size, interpolation=cv2.INTER_AREA) if img.dtype != 'uint8': img = (img * (255. / np.iinfo(img.dtype).max)).astype(np.uint8) rgb_image = None alpha = None if num_channels == 1: rgb_image = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) elif num_channels == 3: rgb_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) elif num_channels == 4: rgb_image = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB) b, g, r, alpha = cv2.split(img) if not is_valid_alpha(alpha): alpha = None else: alpha_gpu = torch.from_numpy(alpha).unsqueeze(0).cuda().float() / 255. else: return f"invalid image: channels {num_channels}" rgb_image_gpu = torch.from_numpy(rgb_image).cuda().float().permute(2, 0, 1) / 255. if alpha is None: resize_transform = transforms.Resize((384, 384), antialias=True) rgb_image_resized = resize_transform(rgb_image_gpu) normalize_image = rgb_image_resized * 2 - 1 mean_color = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1).cuda() resize_transform = transforms.Resize((1024, 1024), antialias=True) rgb_image_resized = resize_transform(rgb_image_gpu) max_value = rgb_image_resized.flatten().max() if max_value < 1e-3: return "invalid image: pure black image" normalize_image = rgb_image_resized / max_value - mean_color normalize_image = normalize_image.unsqueeze(0) resize_transform = transforms.Resize((rgb_image_gpu.shape[1], rgb_image_gpu.shape[2]), antialias=True) # seg from rmbg alpha_gpu_rmbg = rmbg(rgb_image_resized) alpha_gpu_rmbg = alpha_gpu_rmbg.squeeze(0) alpha_gpu_rmbg = resize_transform(alpha_gpu_rmbg) ma, mi = alpha_gpu_rmbg.max(), alpha_gpu_rmbg.min() alpha_gpu_rmbg = (alpha_gpu_rmbg - mi) / (ma - mi) alpha_gpu = alpha_gpu_rmbg alpha_gpu_tmp = alpha_gpu * 255 alpha = alpha_gpu_tmp.to(torch.uint8).squeeze().cpu().numpy() _, alpha = cv2.threshold(alpha, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) labeled_alpha = label(alpha) cleaned_alpha = remove_small_objects(labeled_alpha, min_size=200) cleaned_alpha = (cleaned_alpha > 0).astype(np.uint8) alpha = cleaned_alpha * 255 alpha_gpu = torch.from_numpy(cleaned_alpha).cuda().float().unsqueeze(0) x, y, w, h = find_bounding_box(alpha) # If alpha is provided, the bounds of all foreground are used else: rows, cols = np.where(alpha > 0) if rows.size > 0 and cols.size > 0: x_min = np.min(cols) y_min = np.min(rows) x_max = np.max(cols) y_max = np.max(rows) width = x_max - x_min + 1 height = y_max - y_min + 1 x, y, w, h = x_min, y_min, width, height if np.all(alpha==0): raise ValueError(f"input image too small") bg_gray = bg_color[0] bg_color = torch.from_numpy(bg_color).float().cuda().repeat(alpha_gpu.shape[1], alpha_gpu.shape[2], 1).permute(2, 0, 1) rgb_image_gpu = rgb_image_gpu * alpha_gpu + bg_color * (1 - alpha_gpu) padding_size = [0] * 6 if w > h: padding_size[0] = int(w * padding_ratio) padding_size[2] = int(padding_size[0] + (w - h) / 2) else: padding_size[2] = int(h * padding_ratio) padding_size[0] = int(padding_size[2] + (h - w) / 2) padding_size[1] = padding_size[0] padding_size[3] = padding_size[2] padded_tensor = F.pad(rgb_image_gpu[:, y:(y+h), x:(x+w)], pad=tuple(padding_size), mode='constant', value=bg_gray) return padded_tensor def prepare_image(image_path, bg_color, rmbg_net=None): if os.path.isfile(image_path): img_tensor = load_image(image_path, bg_color=bg_color, rmbg_net=rmbg_net) img_np = img_tensor.permute(1,2,0).cpu().numpy() img_pil = Image.fromarray((img_np*255).astype(np.uint8)) return img_pil