from typing import Callable, List, Optional, Tuple, Union import torch import torch.nn.functional as F from diffusers.models.attention_processor import Attention from diffusers.models.embeddings import apply_rotary_emb from diffusers.utils import logging from einops import rearrange logger = logging.get_logger(__name__) # pylint: disable=invalid-name class FlashTripoSGAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the Tripo2DiT model. It applies a s normalization layer and rotary embedding on query and key vector. """ def __init__(self, topk=True): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) self.topk = topk def qkv(self, attn, q, k, v, attn_mask, dropout_p, is_causal): if k.shape[-2] == 3072: topk = 1024 elif k.shape[-2] == 512: topk = 256 else: topk = k.shape[-2] // 3 if self.topk is True: q1 = q[:, :, ::100, :] sim = q1 @ k.transpose(-1, -2) sim = torch.mean(sim, -2) topk_ind = torch.topk(sim, dim=-1, k=topk).indices.squeeze(-2).unsqueeze(-1) topk_ind = topk_ind.expand(-1, -1, -1, v.shape[-1]) v0 = torch.gather(v, dim=-2, index=topk_ind) k0 = torch.gather(k, dim=-2, index=topk_ind) out = F.scaled_dot_product_attention(q, k0, v0) elif self.topk is False: out = F.scaled_dot_product_attention(q, k, v) else: idx, counts = self.topk start = 0 outs = [] for grid_coord, count in zip(idx, counts): end = start + count q_chunk = q[:, :, start:end, :] q1 = q_chunk[:, :, ::50, :] sim = q1 @ k.transpose(-1, -2) sim = torch.mean(sim, -2) topk_ind = torch.topk(sim, dim=-1, k=topk).indices.squeeze(-2).unsqueeze(-1) topk_ind = topk_ind.expand(-1, -1, -1, v.shape[-1]) v0 = torch.gather(v, dim=-2, index=topk_ind) k0 = torch.gather(k, dim=-2, index=topk_ind) out = F.scaled_dot_product_attention(q_chunk, k0, v0) outs.append(out) start += count out = torch.cat(outs, dim=-2) self.topk = False return out def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view( batch_size, attn.heads, -1, attention_mask.shape[-1] ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) # NOTE that tripo2 split heads first then split qkv or kv, like .view(..., attn.heads, 3, dim) # instead of .view(..., 3, attn.heads, dim). So we need to re-split here. if not attn.is_cross_attention: qkv = torch.cat((query, key, value), dim=-1) split_size = qkv.shape[-1] // attn.heads // 3 qkv = qkv.view(batch_size, -1, attn.heads, split_size * 3) query, key, value = torch.split(qkv, split_size, dim=-1) else: kv = torch.cat((key, value), dim=-1) split_size = kv.shape[-1] // attn.heads // 2 kv = kv.view(batch_size, -1, attn.heads, split_size * 2) key, value = torch.split(kv, split_size, dim=-1) head_dim = key.shape[-1] query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # flashvdm topk hidden_states = self.qkv(attn, query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class TripoSGAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the TripoSG model. It applies a s normalization layer and rotary embedding on query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view( batch_size, attn.heads, -1, attention_mask.shape[-1] ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) # NOTE that pre-trained models split heads first then split qkv or kv, like .view(..., attn.heads, 3, dim) # instead of .view(..., 3, attn.heads, dim). So we need to re-split here. if not attn.is_cross_attention: qkv = torch.cat((query, key, value), dim=-1) split_size = qkv.shape[-1] // attn.heads // 3 qkv = qkv.view(batch_size, -1, attn.heads, split_size * 3) query, key, value = torch.split(qkv, split_size, dim=-1) else: kv = torch.cat((key, value), dim=-1) split_size = kv.shape[-1] // attn.heads // 2 kv = kv.view(batch_size, -1, attn.heads, split_size * 2) key, value = torch.split(kv, split_size, dim=-1) head_dim = key.shape[-1] query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class FusedTripoSGAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0) with fused projection layers. This is used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FusedTripoSGAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view( batch_size, attn.heads, -1, attention_mask.shape[-1] ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) # NOTE that pre-trained split heads first, then split qkv if encoder_hidden_states is None: qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // attn.heads // 3 qkv = qkv.view(batch_size, -1, attn.heads, split_size * 3) query, key, value = torch.split(qkv, split_size, dim=-1) else: if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) query = attn.to_q(hidden_states) kv = attn.to_kv(encoder_hidden_states) split_size = kv.shape[-1] // attn.heads // 2 kv = kv.view(batch_size, -1, attn.heads, split_size * 2) key, value = torch.split(kv, split_size, dim=-1) head_dim = key.shape[-1] query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states