Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" #
|
11 |
|
12 |
if torch.cuda.is_available():
|
13 |
torch_dtype = torch.float16
|
@@ -20,8 +18,6 @@ pipe = pipe.to(device)
|
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
26 |
prompt,
|
27 |
negative_prompt,
|
@@ -66,71 +62,71 @@ css = """
|
|
66 |
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" #
|
70 |
|
71 |
with gr.Row():
|
72 |
prompt = gr.Text(
|
73 |
-
label="
|
74 |
show_label=False,
|
75 |
max_lines=1,
|
76 |
-
placeholder="
|
77 |
container=False,
|
78 |
)
|
79 |
|
80 |
-
run_button = gr.Button("
|
81 |
|
82 |
-
result = gr.Image(label="
|
83 |
|
84 |
-
with gr.Accordion("
|
85 |
negative_prompt = gr.Text(
|
86 |
-
label="
|
87 |
max_lines=1,
|
88 |
-
placeholder="
|
89 |
visible=False,
|
90 |
)
|
91 |
|
92 |
seed = gr.Slider(
|
93 |
-
label="
|
94 |
minimum=0,
|
95 |
maximum=MAX_SEED,
|
96 |
step=1,
|
97 |
value=0,
|
98 |
)
|
99 |
|
100 |
-
randomize_seed = gr.Checkbox(label="
|
101 |
|
102 |
with gr.Row():
|
103 |
width = gr.Slider(
|
104 |
-
label="
|
105 |
minimum=256,
|
106 |
maximum=MAX_IMAGE_SIZE,
|
107 |
step=32,
|
108 |
-
value=1024, #
|
109 |
)
|
110 |
|
111 |
height = gr.Slider(
|
112 |
-
label="
|
113 |
minimum=256,
|
114 |
maximum=MAX_IMAGE_SIZE,
|
115 |
step=32,
|
116 |
-
value=1024, #
|
117 |
)
|
118 |
|
119 |
with gr.Row():
|
120 |
guidance_scale = gr.Slider(
|
121 |
-
label="
|
122 |
minimum=0.0,
|
123 |
maximum=10.0,
|
124 |
step=0.1,
|
125 |
-
value=0.0, #
|
126 |
)
|
127 |
|
128 |
num_inference_steps = gr.Slider(
|
129 |
-
label="
|
130 |
minimum=1,
|
131 |
maximum=50,
|
132 |
step=1,
|
133 |
-
value=2, #
|
134 |
)
|
135 |
|
136 |
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
|
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
model_repo_id = "stabilityai/sdxl-turbo" # ์ฌ์ฉํ๋ ค๋ ๋ชจ๋ธ ์ด๋ฆ
|
9 |
|
10 |
if torch.cuda.is_available():
|
11 |
torch_dtype = torch.float16
|
|
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 1024
|
20 |
|
|
|
|
|
21 |
def infer(
|
22 |
prompt,
|
23 |
negative_prompt,
|
|
|
62 |
|
63 |
with gr.Blocks(css=css) as demo:
|
64 |
with gr.Column(elem_id="col-container"):
|
65 |
+
gr.Markdown(" # ํ
์คํธ-์ด๋ฏธ์ง ์์ฑ Gradio ํ
ํ๋ฆฟ")
|
66 |
|
67 |
with gr.Row():
|
68 |
prompt = gr.Text(
|
69 |
+
label="ํ๋กฌํํธ",
|
70 |
show_label=False,
|
71 |
max_lines=1,
|
72 |
+
placeholder="์์ฑํ๊ณ ์ถ์ ์ด๋ฏธ์ง๋ฅผ ์
๋ ฅํ์ธ์",
|
73 |
container=False,
|
74 |
)
|
75 |
|
76 |
+
run_button = gr.Button("์คํ", scale=0, variant="primary")
|
77 |
|
78 |
+
result = gr.Image(label="๊ฒฐ๊ณผ", show_label=False)
|
79 |
|
80 |
+
with gr.Accordion("๊ณ ๊ธ ์ค์ ", open=False):
|
81 |
negative_prompt = gr.Text(
|
82 |
+
label="๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ",
|
83 |
max_lines=1,
|
84 |
+
placeholder="ํฌํจํ์ง ์์ ๋ด์ฉ์ ์
๋ ฅํ์ธ์",
|
85 |
visible=False,
|
86 |
)
|
87 |
|
88 |
seed = gr.Slider(
|
89 |
+
label="์๋ ๊ฐ",
|
90 |
minimum=0,
|
91 |
maximum=MAX_SEED,
|
92 |
step=1,
|
93 |
value=0,
|
94 |
)
|
95 |
|
96 |
+
randomize_seed = gr.Checkbox(label="์๋ ๋๋คํ", value=True)
|
97 |
|
98 |
with gr.Row():
|
99 |
width = gr.Slider(
|
100 |
+
label="๋๋น (ํฝ์
)",
|
101 |
minimum=256,
|
102 |
maximum=MAX_IMAGE_SIZE,
|
103 |
step=32,
|
104 |
+
value=1024, # ๋ชจ๋ธ์ ์ ํฉํ ๊ธฐ๋ณธ๊ฐ์ผ๋ก ์ค์
|
105 |
)
|
106 |
|
107 |
height = gr.Slider(
|
108 |
+
label="๋์ด (ํฝ์
)",
|
109 |
minimum=256,
|
110 |
maximum=MAX_IMAGE_SIZE,
|
111 |
step=32,
|
112 |
+
value=1024, # ๋ชจ๋ธ์ ์ ํฉํ ๊ธฐ๋ณธ๊ฐ์ผ๋ก ์ค์
|
113 |
)
|
114 |
|
115 |
with gr.Row():
|
116 |
guidance_scale = gr.Slider(
|
117 |
+
label="๊ฐ์ด๋์ค ์ค์ผ์ผ",
|
118 |
minimum=0.0,
|
119 |
maximum=10.0,
|
120 |
step=0.1,
|
121 |
+
value=0.0, # ๋ชจ๋ธ์ ์ ํฉํ ๊ธฐ๋ณธ๊ฐ์ผ๋ก ์ค์
|
122 |
)
|
123 |
|
124 |
num_inference_steps = gr.Slider(
|
125 |
+
label="์ถ๋ก ๋จ๊ณ ์",
|
126 |
minimum=1,
|
127 |
maximum=50,
|
128 |
step=1,
|
129 |
+
value=2, # ๋ชจ๋ธ์ ์ ํฉํ ๊ธฐ๋ณธ๊ฐ์ผ๋ก ์ค์
|
130 |
)
|
131 |
|
132 |
gr.Examples(examples=examples, inputs=[prompt])
|