Update app.py
Browse files
app.py
CHANGED
@@ -11,22 +11,111 @@ if uploaded_file is not None:
|
|
11 |
# Load the file into a DataFrame
|
12 |
df = pd.read_csv(uploaded_file)
|
13 |
|
14 |
-
# Display the
|
15 |
-
st.write("
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Load the file into a DataFrame
|
12 |
df = pd.read_csv(uploaded_file)
|
13 |
|
14 |
+
# Debug: Display the column names to check if 'Description' exists
|
15 |
+
st.write("Columns in the uploaded file:", df.columns)
|
16 |
|
17 |
+
# Check if the 'Description' column exists
|
18 |
+
if 'Description' not in df.columns:
|
19 |
+
st.error("Error: The CSV file does not contain a 'Description' column.")
|
20 |
+
else:
|
21 |
+
# Initialize Hugging Face's zero-shot text classification model
|
22 |
+
model_name = 'distilbert-base-uncased'
|
23 |
+
classifier = pipeline('zero-shot-classification', model=model_name)
|
24 |
|
25 |
+
# List of possible expense categories
|
26 |
+
categories = ["Groceries", "Rent", "Utilities", "Entertainment", "Dining", "Transportation", "Salary"]
|
27 |
|
28 |
+
# Function to classify transaction descriptions into categories
|
29 |
+
def categorize_expense(description):
|
30 |
+
result = classifier(description, candidate_labels=categories)
|
31 |
+
return result['labels'][0] # Choose the most probable category
|
32 |
|
33 |
+
# Apply the categorization function to the 'Description' column in the dataset
|
34 |
+
df['Category'] = df['Description'].apply(categorize_expense)
|
35 |
|
36 |
+
# Show the categorized data
|
37 |
+
st.write("Categorized Data:", df.head())
|
38 |
+
|
39 |
+
# Visualization 1: Pie Chart of Spending by Category
|
40 |
+
category_expenses = df.groupby('Category')['Amount'].sum()
|
41 |
+
|
42 |
+
# Plot pie chart for expense distribution by category
|
43 |
+
fig1 = plt.figure(figsize=(8, 8))
|
44 |
+
category_expenses.plot(kind='pie', autopct='%1.1f%%', startangle=90, colors=plt.cm.Paired.colors)
|
45 |
+
plt.title('Expense Distribution by Category')
|
46 |
+
plt.ylabel('')
|
47 |
+
st.pyplot(fig1)
|
48 |
+
|
49 |
+
# Visualization 2: Monthly Spending Trends (Line Chart)
|
50 |
+
# Convert 'Date' to datetime
|
51 |
+
df['Date'] = pd.to_datetime(df['Date'])
|
52 |
+
|
53 |
+
# Extract month-year for grouping and convert the Period to string to avoid JSON serialization issues
|
54 |
+
df['Month'] = df['Date'].dt.to_period('M').astype(str) # Convert Period to string
|
55 |
+
|
56 |
+
# Group by month and calculate the total amount spent per month
|
57 |
+
monthly_expenses = df.groupby('Month')['Amount'].sum()
|
58 |
+
|
59 |
+
# Plot monthly spending trends as a line chart
|
60 |
+
fig2 = px.line(
|
61 |
+
monthly_expenses,
|
62 |
+
x=monthly_expenses.index,
|
63 |
+
y=monthly_expenses.values,
|
64 |
+
title="Monthly Expenses",
|
65 |
+
labels={"x": "Month", "y": "Amount ($)"}
|
66 |
+
)
|
67 |
+
st.plotly_chart(fig2)
|
68 |
+
|
69 |
+
# Budget and Alerts Example (Tracking if any category exceeds its budget)
|
70 |
+
budgets = {
|
71 |
+
"Groceries": 300,
|
72 |
+
"Rent": 1000,
|
73 |
+
"Utilities": 150,
|
74 |
+
"Entertainment": 100,
|
75 |
+
"Dining": 150,
|
76 |
+
"Transportation": 120,
|
77 |
+
}
|
78 |
+
|
79 |
+
# Track if any category exceeds its budget
|
80 |
+
df['Budget_Exceeded'] = df.apply(lambda row: row['Amount'] > budgets.get(row['Category'], 0), axis=1)
|
81 |
+
|
82 |
+
# Show which categories exceeded their budgets
|
83 |
+
exceeded_budget = df[df['Budget_Exceeded'] == True]
|
84 |
+
st.write("Categories that exceeded the budget:", exceeded_budget[['Date', 'Category', 'Amount']])
|
85 |
+
|
86 |
+
# Visualization 3: Monthly Spending vs Budget (Bar Chart)
|
87 |
+
# Create a new DataFrame to show monthly budget vs actual spending
|
88 |
+
monthly_expenses_df = pd.DataFrame({
|
89 |
+
'Actual': monthly_expenses,
|
90 |
+
'Budget': [sum(budgets.values())] * len(monthly_expenses) # Same budget for simplicity
|
91 |
+
})
|
92 |
+
|
93 |
+
# Plot a bar chart to compare actual spending vs budget
|
94 |
+
fig3 = monthly_expenses_df.plot(kind='bar', figsize=(10, 6))
|
95 |
+
plt.title('Monthly Spending vs Budget')
|
96 |
+
plt.ylabel('Amount ($)')
|
97 |
+
st.pyplot(fig3)
|
98 |
+
|
99 |
+
# -----------------------------------------
|
100 |
+
# Question Answering Functionality
|
101 |
+
# -----------------------------------------
|
102 |
+
|
103 |
+
# Initialize Hugging Face's question answering model (DistilBERT)
|
104 |
+
qa_model = pipeline('question-answering', model="distilbert-base-uncased-distilled-squad")
|
105 |
+
|
106 |
+
# Convert the DataFrame to a text block suitable for QA
|
107 |
+
# Concatenate relevant information (Description, Amount, Category) to form a knowledge base
|
108 |
+
knowledge_base = "\n".join(df.apply(lambda row: f"Description: {row['Description']}, Amount: {row['Amount']}, Category: {row['Category']}", axis=1))
|
109 |
+
|
110 |
+
# Function to answer questions based on the knowledge base
|
111 |
+
def answer_question(question):
|
112 |
+
result = qa_model(question=question, context=knowledge_base)
|
113 |
+
return result['answer']
|
114 |
+
|
115 |
+
# Test the functionality
|
116 |
+
st.write("Ask a question about your expenses:")
|
117 |
+
user_question = st.text_input("Enter your question:")
|
118 |
+
|
119 |
+
if user_question:
|
120 |
+
answer = answer_question(user_question)
|
121 |
+
st.write(f"Answer: {answer}")
|