Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
from PIL import Image | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input | |
import joblib | |
from huggingface_hub import hf_hub_url, cached_download | |
# Replace with your Space name (from the link) | |
SPACE_NAME = "engrharis/Throat_Image_Classifier" | |
# Assuming the filenames are the same as before | |
KNN_MODEL_FILE = "knn_pharyngitis_model.pkl" | |
EXTRACTOR_FILE = "mobilenetv2_feature_extractor.h5" | |
def download_models(url, filename): | |
"""Downloads model files from Hugging Face space if not cached locally.""" | |
model_path = hf_hub_url(SPACE_NAME, filename=filename) | |
if not cached_download(model_path): | |
st.write(f"Downloading {filename}...") | |
cached_download(model_path) | |
st.write(f"{filename} downloaded successfully!") | |
# Load the saved models (download if not cached) | |
download_models(SPACE_NAME, KNN_MODEL_FILE) | |
download_models(SPACE_NAME, EXTRACTOR_FILE) | |
knn = joblib.load(KNN_MODEL_FILE) | |
feature_extractor = load_model(EXTRACTOR_FILE) | |
def preprocess_image(image): | |
img = image.resize((224, 224)) # Resize to match MobileNetV2 input size | |
img_array = np.array(img) | |
img_array = preprocess_input(img_array) # Apply MobileNetV2 preprocessing | |
return np.expand_dims(img_array, axis=0) | |
def classify_image(image): | |
processed_image = preprocess_image(image) | |
features = feature_extractor.predict(processed_image) | |
prediction = knn.predict(features) | |
return "Pharyngitis" if prediction[0] == 1 else "No Pharyngitis" | |
# Streamlit app UI | |
st.title("Pharyngitis Classification App") | |
st.write("Upload an image to classify it as 'Pharyngitis' or 'No Pharyngitis'.") | |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
# Load the uploaded image | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
# Classify the image | |
st.write("Classifying...") | |
prediction = classify_image(image) | |
st.write(f"Prediction: **{prediction}**") |