Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,52 +4,37 @@ from PIL import Image
|
|
4 |
from tensorflow.keras.models import load_model
|
5 |
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
|
6 |
import joblib
|
7 |
-
from huggingface_hub import hf_hub_url, cached_download
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
EXTRACTOR_FILE = "mobilenetv2_feature_extractor.h5"
|
16 |
-
|
17 |
-
|
18 |
-
def download_models(url, filename):
|
19 |
-
"""Downloads model files from Hugging Face space if not cached locally."""
|
20 |
-
model_path = hf_hub_url(SPACE_NAME, filename=filename)
|
21 |
-
if not cached_download(model_path):
|
22 |
-
st.write(f"Downloading {filename}...")
|
23 |
-
cached_download(model_path)
|
24 |
-
st.write(f"{filename} downloaded successfully!")
|
25 |
-
|
26 |
-
|
27 |
-
# Load the saved models (download if not cached)
|
28 |
-
download_models(SPACE_NAME, KNN_MODEL_FILE)
|
29 |
-
download_models(SPACE_NAME, EXTRACTOR_FILE)
|
30 |
-
|
31 |
-
knn = joblib.load(KNN_MODEL_FILE)
|
32 |
-
feature_extractor = load_model(EXTRACTOR_FILE)
|
33 |
-
|
34 |
|
|
|
35 |
def preprocess_image(image):
|
36 |
img = image.resize((224, 224)) # Resize to match MobileNetV2 input size
|
37 |
img_array = np.array(img)
|
38 |
img_array = preprocess_input(img_array) # Apply MobileNetV2 preprocessing
|
39 |
return np.expand_dims(img_array, axis=0)
|
40 |
|
41 |
-
|
42 |
def classify_image(image):
|
43 |
processed_image = preprocess_image(image)
|
44 |
features = feature_extractor.predict(processed_image)
|
45 |
prediction = knn.predict(features)
|
46 |
return "Pharyngitis" if prediction[0] == 1 else "No Pharyngitis"
|
47 |
|
48 |
-
|
49 |
# Streamlit app UI
|
50 |
st.title("Pharyngitis Classification App")
|
51 |
st.write("Upload an image to classify it as 'Pharyngitis' or 'No Pharyngitis'.")
|
|
|
52 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
|
|
53 |
if uploaded_file is not None:
|
54 |
# Load the uploaded image
|
55 |
image = Image.open(uploaded_file)
|
@@ -58,4 +43,4 @@ if uploaded_file is not None:
|
|
58 |
# Classify the image
|
59 |
st.write("Classifying...")
|
60 |
prediction = classify_image(image)
|
61 |
-
st.write(f"Prediction: **{prediction}**")
|
|
|
4 |
from tensorflow.keras.models import load_model
|
5 |
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
|
6 |
import joblib
|
|
|
7 |
|
8 |
+
# Paths to the saved models
|
9 |
+
KNN_MODEL_PATH = './knn_pharyngitis_model.pkl'
|
10 |
+
EXTRACTOR_PATH = './mobilenetv2_feature_extractor.h5'
|
11 |
|
12 |
+
# Load the saved models
|
13 |
+
st.write("Loading models...")
|
14 |
+
knn = joblib.load(KNN_MODEL_PATH)
|
15 |
+
feature_extractor = load_model(EXTRACTOR_PATH)
|
16 |
+
st.write("Models loaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Function to preprocess the uploaded image
|
19 |
def preprocess_image(image):
|
20 |
img = image.resize((224, 224)) # Resize to match MobileNetV2 input size
|
21 |
img_array = np.array(img)
|
22 |
img_array = preprocess_input(img_array) # Apply MobileNetV2 preprocessing
|
23 |
return np.expand_dims(img_array, axis=0)
|
24 |
|
25 |
+
# Function to classify the image
|
26 |
def classify_image(image):
|
27 |
processed_image = preprocess_image(image)
|
28 |
features = feature_extractor.predict(processed_image)
|
29 |
prediction = knn.predict(features)
|
30 |
return "Pharyngitis" if prediction[0] == 1 else "No Pharyngitis"
|
31 |
|
|
|
32 |
# Streamlit app UI
|
33 |
st.title("Pharyngitis Classification App")
|
34 |
st.write("Upload an image to classify it as 'Pharyngitis' or 'No Pharyngitis'.")
|
35 |
+
|
36 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
37 |
+
|
38 |
if uploaded_file is not None:
|
39 |
# Load the uploaded image
|
40 |
image = Image.open(uploaded_file)
|
|
|
43 |
# Classify the image
|
44 |
st.write("Classifying...")
|
45 |
prediction = classify_image(image)
|
46 |
+
st.write(f"Prediction: **{prediction}**")
|