engrharis commited on
Commit
d2192a3
·
verified ·
1 Parent(s): dc8f3c1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -0
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ from PIL import Image
4
+ from tensorflow.keras.models import load_model
5
+ from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
6
+ import joblib
7
+ import gdown
8
+
9
+ # Google Drive model URLs
10
+ KNN_MODEL_URL = 'https://drive.google.com/uc?id=1TJ0KbzFw-2NfuJf67xvp-32uaYLIqpj3'
11
+ EXTRACTOR_URL = 'https://drive.google.com/uc?id=1HR2Qc8Fji6RzbtG_K_sqSoiG0AQnvyZa'
12
+
13
+ # Download the model files
14
+ st.write("Downloading models...")
15
+ gdown.download(KNN_MODEL_URL, 'knn_pharyngitis_model.pkl', quiet=False)
16
+ gdown.download(EXTRACTOR_URL, 'mobilenetv2_feature_extractor.h5', quiet=False)
17
+ st.write("Models downloaded successfully!")
18
+
19
+ # Load the saved models
20
+ knn = joblib.load('knn_pharyngitis_model.pkl')
21
+ feature_extractor = load_model('mobilenetv2_feature_extractor.h5')
22
+
23
+ # Function to preprocess the uploaded image
24
+ def preprocess_image(image):
25
+ img = image.resize((224, 224)) # Resize to match MobileNetV2 input size
26
+ img_array = np.array(img)
27
+ img_array = preprocess_input(img_array) # Apply MobileNetV2 preprocessing
28
+ return np.expand_dims(img_array, axis=0)
29
+
30
+ # Function to classify the image
31
+ def classify_image(image):
32
+ processed_image = preprocess_image(image)
33
+ features = feature_extractor.predict(processed_image)
34
+ prediction = knn.predict(features)
35
+ return "Pharyngitis" if prediction[0] == 1 else "No Pharyngitis"
36
+
37
+ # Streamlit app UI
38
+ st.title("Pharyngitis Classification App")
39
+ st.write("Upload an image to classify it as 'Pharyngitis' or 'No Pharyngitis'.")
40
+
41
+ uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
42
+
43
+ if uploaded_file is not None:
44
+ # Load the uploaded image
45
+ image = Image.open(uploaded_file)
46
+ st.image(image, caption="Uploaded Image", use_column_width=True)
47
+
48
+ # Classify the image
49
+ st.write("Classifying...")
50
+ prediction = classify_image(image)
51
+ st.write(f"Prediction: **{prediction}**")