Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from matplotlib.patches import Polygon, Circle
|
5 |
+
|
6 |
+
# Function to calculate the distance between two points
|
7 |
+
def calculate_distance(x1, y1, x2, y2):
|
8 |
+
return np.sqrt((x2 - x1) * 2 + (y2 - y1) * 2)
|
9 |
+
|
10 |
+
# Function to calculate angles using the Law of Cosines
|
11 |
+
def calculate_angle(a, b, c):
|
12 |
+
try:
|
13 |
+
angle = np.degrees(np.acos((b * 2 + c * 2 - a ** 2) / (2 * b * c)))
|
14 |
+
except ValueError:
|
15 |
+
angle = 0 # Handle possible domain error in acos
|
16 |
+
return angle
|
17 |
+
|
18 |
+
# Function to calculate area using Heron's formula
|
19 |
+
def calculate_area(a, b, c):
|
20 |
+
s = (a + b + c) / 2
|
21 |
+
area = np.sqrt(s * (s - a) * (s - b) * (s - c))
|
22 |
+
return area
|
23 |
+
|
24 |
+
# Function to calculate the perimeter
|
25 |
+
def calculate_perimeter(a, b, c):
|
26 |
+
return a + b + c
|
27 |
+
|
28 |
+
# Function to calculate the radius of the inscribed circle
|
29 |
+
def calculate_radius_inscribed_circle(a, b, c):
|
30 |
+
try:
|
31 |
+
s = (a + b + c) / 2
|
32 |
+
area = calculate_area(a, b, c)
|
33 |
+
radius = area / s
|
34 |
+
except ZeroDivisionError:
|
35 |
+
radius = 0 # Handle case where area or perimeter is zero
|
36 |
+
return radius
|
37 |
+
|
38 |
+
# Function to calculate the radius of the circumscribed circle
|
39 |
+
def calculate_radius_circumscribed_circle(a, b, c):
|
40 |
+
try:
|
41 |
+
area = calculate_area(a, b, c)
|
42 |
+
radius = (a * b * c) / (4 * area)
|
43 |
+
except ZeroDivisionError:
|
44 |
+
radius = 0 # Handle case where area is zero
|
45 |
+
return radius
|
46 |
+
|
47 |
+
# Function to calculate the centroid coordinates
|
48 |
+
def calculate_centroid(x1, y1, x2, y2, x3, y3):
|
49 |
+
G_x = (x1 + x2 + x3) / 3
|
50 |
+
G_y = (y1 + y2 + y3) / 3
|
51 |
+
return G_x, G_y
|
52 |
+
|
53 |
+
# Function to calculate the incenter coordinates
|
54 |
+
def calculate_incenter(x1, y1, x2, y2, x3, y3, a, b, c):
|
55 |
+
try:
|
56 |
+
I_x = (a * x1 + b * x2 + c * x3) / (a + b + c)
|
57 |
+
I_y = (a * y1 + b * y2 + c * y3) / (a + b + c)
|
58 |
+
except ZeroDivisionError:
|
59 |
+
I_x, I_y = 0, 0 # Handle division by zero if sides sum to zero
|
60 |
+
return I_x, I_y
|
61 |
+
|
62 |
+
# Function to calculate the circumcenter coordinates
|
63 |
+
def calculate_circumcenter(x1, y1, x2, y2, x3, y3, a, b, c):
|
64 |
+
try:
|
65 |
+
D = 2 * (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2))
|
66 |
+
U_x = ((x1*2 + y12) * (y2 - y3) + (x22 + y22) * (y3 - y1) + (x32 + y3*2) * (y1 - y2)) / D
|
67 |
+
U_y = ((x1*2 + y12) * (x3 - x2) + (x22 + y22) * (x1 - x3) + (x32 + y3*2) * (x2 - x1)) / D
|
68 |
+
except ZeroDivisionError:
|
69 |
+
U_x, U_y = 0, 0 # Handle division by zero in circumcenter calculation
|
70 |
+
return U_x, U_y
|
71 |
+
|
72 |
+
# Function to calculate midpoints of sides
|
73 |
+
def calculate_midpoints(x1, y1, x2, y2, x3, y3):
|
74 |
+
# Midpoint of AB
|
75 |
+
M1_x = (x1 + x2) / 2
|
76 |
+
M1_y = (y1 + y2) / 2
|
77 |
+
# Midpoint of BC
|
78 |
+
M2_x = (x2 + x3) / 2
|
79 |
+
M2_y = (y2 + y3) / 2
|
80 |
+
# Midpoint of CA
|
81 |
+
M3_x = (x3 + x1) / 2
|
82 |
+
M3_y = (y3 + y1) / 2
|
83 |
+
return (M1_x, M1_y), (M2_x, M2_y), (M3_x, M3_y)
|
84 |
+
|
85 |
+
# Function to format values close to zero as 0
|
86 |
+
def format_zero(val):
|
87 |
+
if abs(val) < 1e-6:
|
88 |
+
return 0.0
|
89 |
+
return val
|
90 |
+
|
91 |
+
# Function to plot the triangle with all points in different colors and a legend
|
92 |
+
def plot_triangle(x1, y1, x2, y2, x3, y3, I_x, I_y, U_x, U_y, G_x, G_y, midpoints, a, b, c):
|
93 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
94 |
+
triangle = Polygon([(x1, y1), (x2, y2), (x3, y3)], closed=True, edgecolor='b', facecolor='lightblue')
|
95 |
+
ax.add_patch(triangle)
|
96 |
+
|
97 |
+
# Define colors for different points
|
98 |
+
vertex_color = 'blue'
|
99 |
+
midpoint_color = 'green'
|
100 |
+
centroid_color = 'orange'
|
101 |
+
incenter_color = 'red'
|
102 |
+
circumcenter_color = 'purple'
|
103 |
+
|
104 |
+
# Plot the triangle vertices
|
105 |
+
vertices = [(x1, y1), (x2, y2), (x3, y3)]
|
106 |
+
vertex_labels = [f"Vertex A ({x1:.3f}, {y1:.3f})", f"Vertex B ({x2:.3f}, {y2:.3f})", f"Vertex C ({x3:.3f}, {y3:.3f})"]
|
107 |
+
for i, (vx, vy) in enumerate(vertices):
|
108 |
+
ax.scatter(vx, vy, color=vertex_color, zorder=3)
|
109 |
+
|
110 |
+
# Plot key points with their corresponding colors
|
111 |
+
key_points = [
|
112 |
+
(I_x, I_y, incenter_color),
|
113 |
+
(U_x, U_y, circumcenter_color),
|
114 |
+
(G_x, G_y, centroid_color)
|
115 |
+
]
|
116 |
+
key_points_labels = [f"Incenter ({I_x:.3f}, {I_y:.3f})", f"Circumcenter ({U_x:.3f}, {U_y:.3f})", f"Centroid ({G_x:.3f}, {G_y:.3f})"]
|
117 |
+
|
118 |
+
for x, y, color in key_points:
|
119 |
+
ax.scatter(x, y, color=color, zorder=4)
|
120 |
+
|
121 |
+
# Plot midpoints of sides
|
122 |
+
for i, (mx, my) in enumerate(midpoints):
|
123 |
+
ax.scatter(mx, my, color=midpoint_color, zorder=5)
|
124 |
+
|
125 |
+
# Draw the inscribed circle (incircle)
|
126 |
+
radius_in = calculate_radius_inscribed_circle(a, b, c)
|
127 |
+
incircle = Circle((I_x, I_y), radius_in, color=incenter_color, fill=False, linestyle='--', linewidth=2, label="Inscribed Circle")
|
128 |
+
ax.add_patch(incircle)
|
129 |
+
|
130 |
+
# Draw the circumscribed circle (circumcircle)
|
131 |
+
radius_circum = calculate_radius_circumscribed_circle(a, b, c)
|
132 |
+
circumcircle = Circle((U_x, U_y), radius_circum, color=circumcenter_color, fill=False, linestyle='--', linewidth=2, label="Circumscribed Circle")
|
133 |
+
ax.add_patch(circumcircle)
|
134 |
+
|
135 |
+
# Add legend
|
136 |
+
handles = [
|
137 |
+
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=8, label=vertex_labels[0]),
|
138 |
+
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=8, label=vertex_labels[1]),
|
139 |
+
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=8, label=vertex_labels[2]),
|
140 |
+
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=midpoint_color, markersize=8, label=midpoints[0]),
|
141 |
+
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=midpoint_color, markersize=8, label=midpoints[1]),
|
142 |
+
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=midpoint_color, markersize=8, label=midpoints[2]),
|
143 |
+
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=incenter_color, markersize=8, label=key_points_labels[0]),
|
144 |
+
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=circumcenter_color, markersize=8, label=key_points_labels[1]),
|
145 |
+
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=centroid_color, markersize=8, label=key_points_labels[2])
|
146 |
+
]
|
147 |
+
ax.legend(handles=handles, loc='upper left', fontsize=12)
|
148 |
+
|
149 |
+
# Adjust the plot limits and aspect ratio
|
150 |
+
padding = 3
|
151 |
+
ax.set_xlim([min(x1, x2, x3) - padding, max(x1, x2, x3) + padding])
|
152 |
+
ax.set_ylim([min(y1, y2, y3) - padding, max(y1, y2, y3) + padding])
|
153 |
+
ax.set_aspect('equal', adjustable='datalim')
|
154 |
+
|
155 |
+
ax.set_title('Solved Triangle', fontsize=18)
|
156 |
+
ax.set_xlabel('X-axis', fontsize=12)
|
157 |
+
ax.set_ylabel('Y-axis', fontsize=12)
|
158 |
+
|
159 |
+
plt.grid(True)
|
160 |
+
st.pyplot(fig)
|
161 |
+
|
162 |
+
# Function to check if the sides form a valid triangle
|
163 |
+
def is_valid_triangle(a, b, c):
|
164 |
+
# Check if the sum of two sides is greater than the third side (Triangle Inequality Theorem)
|
165 |
+
return a + b > c and b + c > a and c + a > b
|
166 |
+
|
167 |
+
# Main function to interact with the user
|
168 |
+
def main():
|
169 |
+
st.title("Advanced Triangle Solver")
|
170 |
+
|
171 |
+
st.sidebar.header("Enter the coordinates of the three points:")
|
172 |
+
|
173 |
+
# Coordinates input (X1, Y1), (X2, Y2), (X3, Y3)
|
174 |
+
x1 = st.sidebar.number_input("X1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
175 |
+
y1 = st.sidebar.number_input("Y1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
176 |
+
x2 = st.sidebar.number_input("X2", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
177 |
+
y2 = st.sidebar.number_input("Y2", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
178 |
+
x3 = st.sidebar.number_input("X3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
179 |
+
y3 = st.sidebar.number_input("Y3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
180 |
+
|
181 |
+
if st.sidebar.button("Calculate"):
|
182 |
+
# Calculate the lengths of the sides of the triangle using Euclidean distance
|
183 |
+
a = calculate_distance(x2, y2, x3, y3)
|
184 |
+
b = calculate_distance(x1, y1, x3, y3)
|
185 |
+
c = calculate_distance(x1, y1, x2, y2)
|
186 |
+
|
187 |
+
# Validate if it's a valid triangle
|
188 |
+
if not is_valid_triangle(a, b, c):
|
189 |
+
st.error("The entered points do not form a valid triangle.")
|
190 |
+
return
|
191 |
+
|
192 |
+
# Calculate angles using the Law of Cosines
|
193 |
+
A = calculate_angle(a, b, c)
|
194 |
+
B = calculate_angle(b, a, c)
|
195 |
+
C = calculate_angle(c, a, b)
|
196 |
+
|
197 |
+
# Check if angles sum up to 180 degrees
|
198 |
+
if abs(A + B + C - 180) > 1e-2:
|
199 |
+
st.error("The sum of the angles is not 180 degrees.")
|
200 |
+
return
|
201 |
+
|
202 |
+
# Calculate area, perimeter, and radius of inscribed and circumscribed circles
|
203 |
+
area = calculate_area(a, b, c)
|
204 |
+
perimeter = calculate_perimeter(a, b, c)
|
205 |
+
radius_in = calculate_radius_inscribed_circle(a, b, c)
|
206 |
+
radius_circum = calculate_radius_circumscribed_circle(a, b, c)
|
207 |
+
|
208 |
+
# Calculate centroid, incenter, and circumcenter coordinates
|
209 |
+
G_x, G_y = calculate_centroid(x1, y1, x2, y2, x3, y3)
|
210 |
+
I_x, I_y = calculate_incenter(x1, y1, x2, y2, x3, y3, a, b, c)
|
211 |
+
U_x, U_y = calculate_circumcenter(x1, y1, x2, y2, x3, y3, a, b, c)
|
212 |
+
|
213 |
+
# Calculate midpoints of the sides
|
214 |
+
midpoints = calculate_midpoints(x1, y1, x2, y2, x3, y3)
|
215 |
+
|
216 |
+
# Display results in columns
|
217 |
+
col1, col2 = st.columns(2)
|
218 |
+
|
219 |
+
with col1:
|
220 |
+
st.subheader("Coordinates of Triangle:")
|
221 |
+
st.markdown(f"Vertex A: *({x1:.3f}, {y1:.3f})*")
|
222 |
+
st.markdown(f"Vertex B: *({x2:.3f}, {y2:.3f})*")
|
223 |
+
st.markdown(f"Vertex C: *({x3:.3f}, {y3:.3f})*")
|
224 |
+
|
225 |
+
with col2:
|
226 |
+
st.subheader("Mid-Points of Triangle:")
|
227 |
+
st.markdown(f"Midpoint of AB: ({midpoints[0][0]:.3f}, {midpoints[0][1]:.3f})")
|
228 |
+
st.markdown(f"Midpoint of BC: ({midpoints[1][0]:.3f}, {midpoints[1][1]:.3f})")
|
229 |
+
st.markdown(f"Midpoint of CA: ({midpoints[2][0]:.3f}, {midpoints[2][1]:.3f})")
|
230 |
+
|
231 |
+
|
232 |
+
col1, col2 = st.columns(2)
|
233 |
+
|
234 |
+
with col1:
|
235 |
+
st.subheader("Angles of Triangle:")
|
236 |
+
st.markdown(f"Angle A: *{format_zero(A):.3f}°*")
|
237 |
+
st.markdown(f"Angle B: *{format_zero(B):.3f}°*")
|
238 |
+
st.markdown(f"Angle C: *{format_zero(C):.3f}°*")
|
239 |
+
|
240 |
+
with col2:
|
241 |
+
st.subheader("Sides of Triangle:")
|
242 |
+
st.markdown(f"Side a: *{format_zero(a):.3f}* units")
|
243 |
+
st.markdown(f"Side b: *{format_zero(b):.3f}* units")
|
244 |
+
st.markdown(f"Side c: *{format_zero(c):.3f}* units")
|
245 |
+
|
246 |
+
|
247 |
+
col1, col2, col3 = st.columns(3)
|
248 |
+
|
249 |
+
with col1:
|
250 |
+
st.subheader("Incenter of Triangle:")
|
251 |
+
st.markdown(f"Coordinates: *({format_zero(I_x):.3f}, {format_zero(I_y):.3f})*")
|
252 |
+
st.markdown(f"Radius: *{radius_in:.3f}* units")
|
253 |
+
|
254 |
+
with col2:
|
255 |
+
st.subheader("Circumcenter of Triangle:")
|
256 |
+
st.markdown(f"Coordinates: *({format_zero(U_x):.3f}, {format_zero(U_y):.3f})*")
|
257 |
+
st.markdown(f"Radius: *{radius_circum:.3f}* units")
|
258 |
+
|
259 |
+
with col3:
|
260 |
+
st.subheader("Other Properties:")
|
261 |
+
st.markdown(f"Area: *{format_zero(area):.3f}* square units")
|
262 |
+
st.markdown(f"Perimeter: *{format_zero(perimeter):.3f}* units")
|
263 |
+
st.markdown(f"Centroid: *({format_zero(G_x):.3f}, {format_zero(G_y):.3f})*")
|
264 |
+
|
265 |
+
# Display triangle graph with midpoints and colored points
|
266 |
+
plot_triangle(x1, y1, x2, y2, x3, y3, I_x, I_y, U_x, U_y, G_x, G_y, midpoints, a, b, c)
|
267 |
+
|
268 |
+
if _name_ == "_main_":
|
269 |
+
main()
|