import streamlit as st import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Polygon, Circle # Function to calculate the distance between two points def calculate_distance(x1, y1, x2, y2): return np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) # Function to calculate angles using the Law of Cosines def calculate_angle(a, b, c): try: angle = np.degrees(np.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c))) except ValueError: angle = 0 # Handle possible domain error in acos return angle # Function to calculate area using Heron's formula def calculate_area(a, b, c): s = (a + b + c) / 2 area = np.sqrt(s * (s - a) * (s - b) * (s - c)) return area # Function to calculate the perimeter def calculate_perimeter(a, b, c): return a + b + c # Function to calculate the radius of the inscribed circle def calculate_radius_inscribed_circle(a, b, c): try: s = (a + b + c) / 2 area = calculate_area(a, b, c) radius = area / s except ZeroDivisionError: radius = 0 # Handle case where area or perimeter is zero return radius # Function to calculate the radius of the circumscribed circle def calculate_radius_circumscribed_circle(a, b, c): try: area = calculate_area(a, b, c) radius = (a * b * c) / (4 * area) except ZeroDivisionError: radius = 0 # Handle case where area is zero return radius # Function to calculate the centroid coordinates def calculate_centroid(x1, y1, x2, y2, x3, y3): G_x = (x1 + x2 + x3) / 3 G_y = (y1 + y2 + y3) / 3 return G_x, G_y # Function to calculate the incenter coordinates def calculate_incenter(x1, y1, x2, y2, x3, y3, a, b, c): try: I_x = (a * x1 + b * x2 + c * x3) / (a + b + c) I_y = (a * y1 + b * y2 + c * y3) / (a + b + c) except ZeroDivisionError: I_x, I_y = 0, 0 # Handle division by zero if sides sum to zero return I_x, I_y # Function to calculate the circumcenter coordinates def calculate_circumcenter(x1, y1, x2, y2, x3, y3, a, b, c): try: D = 2 * (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) U_x = ((x1**2 + y1**2) * (y2 - y3) + (x2**2 + y2**2) * (y3 - y1) + (x3**2 + y3**2) * (y1 - y2)) / D U_y = ((x1**2 + y1**2) * (x3 - x2) + (x2**2 + y2**2) * (x1 - x3) + (x3**2 + y3**2) * (x2 - x1)) / D except ZeroDivisionError: U_x, U_y = 0, 0 # Handle division by zero in circumcenter calculation return U_x, U_y # Function to calculate midpoints of sides def calculate_midpoints(x1, y1, x2, y2, x3, y3): # Midpoint of AB M1_x = (x1 + x2) / 2 M1_y = (y1 + y2) / 2 # Midpoint of BC M2_x = (x2 + x3) / 2 M2_y = (y2 + y3) / 2 # Midpoint of CA M3_x = (x3 + x1) / 2 M3_y = (y3 + y1) / 2 return (M1_x, M1_y), (M2_x, M2_y), (M3_x, M3_y) # Function to format values close to zero as 0 def format_zero(val): if abs(val) < 1e-6: return 0.0 return val # Function to plot the triangle with all points in different colors and a legend def plot_triangle(x1, y1, x2, y2, x3, y3, I_x, I_y, U_x, U_y, G_x, G_y, midpoints, a, b, c): fig, ax = plt.subplots(figsize=(8, 6)) triangle = Polygon([(x1, y1), (x2, y2), (x3, y3)], closed=True, edgecolor='b', facecolor='lightblue') ax.add_patch(triangle) # Define colors for different points vertex_color = 'blue' midpoint_color = 'green' centroid_color = 'orange' incenter_color = 'red' circumcenter_color = 'purple' # Plot the triangle vertices vertices = [(x1, y1), (x2, y2), (x3, y3)] vertex_labels = [f"Vertex A ({x1:.3f}, {y1:.3f})", f"Vertex B ({x2:.3f}, {y2:.3f})", f"Vertex C ({x3:.3f}, {y3:.3f})"] for i, (vx, vy) in enumerate(vertices): ax.scatter(vx, vy, color=vertex_color, zorder=3) # Plot key points with their corresponding colors key_points = [ (I_x, I_y, incenter_color), (U_x, U_y, circumcenter_color), (G_x, G_y, centroid_color) ] key_points_labels = [f"Incenter ({I_x:.3f}, {I_y:.3f})", f"Circumcenter ({U_x:.3f}, {U_y:.3f})", f"Centroid ({G_x:.3f}, {G_y:.3f})"] for x, y, color in key_points: ax.scatter(x, y, color=color, zorder=4) # Plot midpoints of sides for i, (mx, my) in enumerate(midpoints): ax.scatter(mx, my, color=midpoint_color, zorder=5) midpoints_labels = [f"Mid-Point M1 ({(x1 + x2) / 2:.3f}, {(y1 + y2) / 2:.3f})", f"Mid-Point M2 ({(x2 + x3) / 2:.3f}, {(y2 + y3) / 2:.3f})", f"Mid-Point M3 ({(x1 + x3) / 2:.3f}, {(y1 + y3) / 2:.3f})"] # Draw the inscribed circle (incircle) radius_in = calculate_radius_inscribed_circle(a, b, c) incircle = Circle((I_x, I_y), radius_in, color=incenter_color, fill=False, linestyle='--', linewidth=2, label="Inscribed Circle") ax.add_patch(incircle) # Draw the circumscribed circle (circumcircle) radius_circum = calculate_radius_circumscribed_circle(a, b, c) circumcircle = Circle((U_x, U_y), radius_circum, color=circumcenter_color, fill=False, linestyle='--', linewidth=2, label="Circumscribed Circle") ax.add_patch(circumcircle) # Add legend handles = [ plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=8, label=vertex_labels[0]), plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=8, label=vertex_labels[1]), plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=8, label=vertex_labels[2]), plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=midpoint_color, markersize=8, label=midpoints_labels[0]), plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=midpoint_color, markersize=8, label=midpoints_labels[1]), plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=midpoint_color, markersize=8, label=midpoints_labels[2]), plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=incenter_color, markersize=8, label=key_points_labels[0]), plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=circumcenter_color, markersize=8, label=key_points_labels[1]), plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=centroid_color, markersize=8, label=key_points_labels[2]) ] ax.legend(handles=handles, loc='upper left', fontsize=12) # Adjust the plot limits and aspect ratio padding = 3 ax.set_xlim([min(x1, x2, x3) - padding, max(x1, x2, x3) + padding]) ax.set_ylim([min(y1, y2, y3) - padding, max(y1, y2, y3) + padding]) ax.set_aspect('equal', adjustable='datalim') ax.set_title('Solved Triangle', fontsize=18) ax.set_xlabel('X-axis', fontsize=12) ax.set_ylabel('Y-axis', fontsize=12) plt.grid(True) st.pyplot(fig) # Function to check if the sides form a valid triangle def is_valid_triangle(a, b, c): # Check if the sum of two sides is greater than the third side (Triangle Inequality Theorem) return a + b > c and b + c > a and c + a > b # Main function to interact with the user def main(): st.title("Advanced Triangle Solver", anchor='center') st.sidebar.header("Enter the coordinates of the three points:") # Coordinates input (X1, Y1), (X2, Y2), (X3, Y3) x1 = st.sidebar.number_input("X1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") y1 = st.sidebar.number_input("Y1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") x2 = st.sidebar.number_input("X2", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") y2 = st.sidebar.number_input("Y2", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") x3 = st.sidebar.number_input("X3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") y3 = st.sidebar.number_input("Y3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") # Calculate the lengths of the sides a = calculate_distance(x2, y2, x3, y3) b = calculate_distance(x1, y1, x3, y3) c = calculate_distance(x1, y1, x2, y2) # Check if the triangle is valid if not is_valid_triangle(a, b, c): st.error("The given points do not form a valid triangle.") return # Calculate angles using the law of cosines angle_A = calculate_angle(a, b, c) angle_B = calculate_angle(b, a, c) angle_C = calculate_angle(c, a, b) # Calculate area and perimeter area = calculate_area(a, b, c) perimeter = calculate_perimeter(a, b, c) # Calculate the radius of the inscribed and circumscribed circles radius_inscribed_circle = calculate_radius_inscribed_circle(a, b, c) radius_circumscribed_circle = calculate_radius_circumscribed_circle(a, b, c) # Calculate the centroid coordinates G_x, G_y = calculate_centroid(x1, y1, x2, y2, x3, y3) # Calculate the incenter coordinates I_x, I_y = calculate_incenter(x1, y1, x2, y2, x3, y3, a, b, c) # Calculate the circumcenter coordinates U_x, U_y = calculate_circumcenter(x1, y1, x2, y2, x3, y3, a, b, c) # Calculate midpoints of sides midpoints = calculate_midpoints(x1, y1, x2, y2, x3, y3) # Display results st.subheader("Calculated Properties:") st.write(f"**Side Lengths (a, b, c):** {a:.3f}, {b:.3f}, {c:.3f}") st.write(f"**Angles (A, B, C):** {angle_A:.3f}°, {angle_B:.3f}°, {angle_C:.3f}°") st.write(f"**Area:** {area:.3f}") st.write(f"**Perimeter:** {perimeter:.3f}") st.write(f"**Radius of Inscribed Circle:** {radius_inscribed_circle:.3f}") st.write(f"**Radius of Circumscribed Circle:** {radius_circumscribed_circle:.3f}") plot_triangle(x1, y1, x2, y2, x3, y3, I_x, I_y, U_x, U_y, G_x, G_y, midpoints, a, b, c) if __name__ == "__main__": main()