Spaces:
Build error
Build error
File size: 10,047 Bytes
7521288 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
"""
Paper: "UTRNet: High-Resolution Urdu Text Recognition In Printed Documents" presented at ICDAR 2023
Authors: Abdur Rahman, Arjun Ghosh, Chetan Arora
GitHub Repository: https://github.com/abdur75648/UTRNet-High-Resolution-Urdu-Text-Recognition
Project Website: https://abdur75648.github.io/UTRNet/
Copyright (c) 2023-present: This work is licensed under the Creative Commons Attribution-NonCommercial
4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/)
"""
import os,shutil
import time
import argparse
import random
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
import pytz
import torch
import torch.utils.data
import torch.nn.functional as F
from tqdm import tqdm
from nltk.metrics.distance import edit_distance
from utils import CTCLabelConverter, AttnLabelConverter, Averager, Logger
from dataset import hierarchical_dataset, AlignCollate
from model import Model
def validation(model, criterion, evaluation_loader, converter, opt, device):
""" validation or evaluation """
eval_arr = []
sum_len_gt = 0
n_correct = 0
norm_ED = 0
length_of_data = 0
infer_time = 0
valid_loss_avg = Averager()
for i, (image_tensors, labels) in enumerate(tqdm(evaluation_loader)):
batch_size = image_tensors.size(0)
length_of_data = length_of_data + batch_size
image = image_tensors.to(device)
# For max length prediction
length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
text_for_loss, length_for_loss = converter.encode(labels, batch_max_length=opt.batch_max_length)
start_time = time.time()
if 'CTC' in opt.Prediction:
preds = model(image)
forward_time = time.time() - start_time
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
cost = criterion(preds.log_softmax(2).permute(1, 0, 2), text_for_loss, preds_size, length_for_loss)
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index.data, preds_size.data)
else:
preds = model(image, text=text_for_pred, is_train=False)
forward_time = time.time() - start_time
preds = preds[:, :text_for_loss.shape[1] - 1, :].to(device)
target = text_for_loss[:, 1:].to(device) # without [GO] Symbol
cost = criterion(preds.contiguous().view(-1, preds.shape[-1]), target.contiguous().view(-1))
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index, length_for_pred)
labels = converter.decode(text_for_loss[:, 1:], length_for_loss)
infer_time += forward_time
valid_loss_avg.add(cost)
# calculate accuracy & confidence score
preds_prob = F.softmax(preds, dim=2)
preds_max_prob, _ = preds_prob.max(dim=2)
confidence_score_list = []
for gt, pred, pred_max_prob in zip(labels, preds_str, preds_max_prob):
if 'Attn' in opt.Prediction:
gt = gt[:gt.find('[s]')]
pred_EOS = pred.find('[s]')
pred = pred[:pred_EOS] # prune after "end of sentence" token ([s])
pred_max_prob = pred_max_prob[:pred_EOS]
if pred == gt:
n_correct += 1
# ICDAR2019 Normalized Edit Distance
if len(gt) == 0 or len(pred) == 0:
ED = 0
elif len(gt) > len(pred):
ED = 1 - edit_distance(pred, gt) / len(gt)
else:
ED = 1 - edit_distance(pred, gt) / len(pred)
eval_arr.append([gt,pred,ED])
sum_len_gt += len(gt)
norm_ED += (ED*len(gt))
# calculate confidence score (= multiply of pred_max_prob)
try:
confidence_score = pred_max_prob.cumprod(dim=0)[-1]
except:
confidence_score = 0 # for empty pred case, when prune after "end of sentence" token ([s])
confidence_score_list.append(confidence_score)
# print(pred, gt, pred==gt, confidence_score)
accuracy = n_correct / float(length_of_data) * 100
norm_ED = norm_ED / float(sum_len_gt)
return valid_loss_avg.val(), accuracy, norm_ED, eval_arr
def test(opt, device):
opt.device = device
os.makedirs("test_outputs", exist_ok=True)
datetime_now = str(datetime.now(pytz.timezone('Asia/Kolkata')).strftime("%Y-%m-%d_%H-%M-%S"))
logger = Logger(f'test_outputs/{datetime_now}.txt')
""" model configuration """
if 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model = Model(opt)
logger.log('model input parameters', opt.imgH, opt.imgW, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
model = model.to(device)
# load model
model.load_state_dict(torch.load(opt.saved_model, map_location=device))
logger.log('Loaded pretrained model from %s' % opt.saved_model)
# logger.log(model)
""" setup loss """
if 'CTC' in opt.Prediction:
criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
else:
criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device) # ignore [GO] token = ignore index 0
""" evaluation """
model.eval()
with torch.no_grad():
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW)#, keep_ratio_with_pad=opt.PAD)
eval_data, eval_data_log = hierarchical_dataset(root=opt.eval_data, opt=opt, rand_aug=False)
logger.log(eval_data_log)
evaluation_loader = torch.utils.data.DataLoader(
eval_data, batch_size=opt.batch_size,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_evaluation, pin_memory=True)
_, accuracy, norm_ED, eval_arr = validation( model, criterion, evaluation_loader, converter, opt,device)
logger.log("="*20)
logger.log(f'Accuracy : {accuracy:0.4f}\n')
logger.log(f'Norm_ED : {norm_ED:0.4f}\n')
logger.log("="*20)
if opt.visualize:
logger.log("Threshold - ", opt.threshold)
logger.log("ED","\t","gt","\t","pred")
arr = []
for gt,pred,ED in eval_arr:
ED = ED*100.0
arr.append(ED)
if ED<=(opt.threshold):
logger.log(ED,"\t",gt,"\t",pred)
plt.hist(arr, edgecolor="red")
plt.savefig('test_outputs/'+str(datetime_now)+".png")
plt.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--visualize', action='store_true', help='for visualization of bad samples')
parser.add_argument('--threshold', type=float, help='Save samples below this threshold in txt file', default=50.0)
parser.add_argument('--eval_data', required=True, help='path to evaluation dataset')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--batch_size', type=int, default=32, help='input batch size')
parser.add_argument('--saved_model', required=True, help="path to saved_model to evaluation")
""" Data processing """
parser.add_argument('--batch_max_length', type=int, default=100, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=400, help='the width of the input image')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
""" Model Architecture """
parser.add_argument('--FeatureExtraction', type=str, default="HRNet", #required=True,
help='FeatureExtraction stage VGG|RCNN|ResNet|UNet|HRNet|Densenet|InceptionUnet|ResUnet|AttnUNet|UNet|VGG')
parser.add_argument('--SequenceModeling', type=str, default="DBiLSTM", #required=True,
help='SequenceModeling stage LSTM|GRU|MDLSTM|BiLSTM|DBiLSTM')
parser.add_argument('--Prediction', type=str, default="CTC", #required=True,
help='Prediction stage CTC|Attn')
parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor')
parser.add_argument('--output_channel', type=int, default=512, help='the number of output channel of Feature extractor')
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
""" GPU Selection """
parser.add_argument('--device_id', type=str, default=None, help='cuda device ID')
opt = parser.parse_args()
if opt.FeatureExtraction == "HRNet":
opt.output_channel = 32
# Fix random seeds for both numpy and pytorch
seed = 1111
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
""" vocab / character number configuration """
file = open("UrduGlyphs.txt","r",encoding="utf-8")
content = file.readlines()
content = ''.join([str(elem).strip('\n') for elem in content])
opt.character = content+" "
cuda_str = 'cuda'
if opt.device_id is not None:
cuda_str = f'cuda:{opt.device_id}'
device = torch.device(cuda_str if torch.cuda.is_available() else 'cpu')
print("Device : ", device)
# opt.eval_data = "/DATA/parseq/val/"
# test(opt, device)
# opt.eval_data = "/DATA/parseq/IIITH/lmdb_new/"
# test(opt, device)
# opt.eval_data = "/DATA/public_datasets/UPTI/valid/"
# test(opt, device)
test(opt, device) |