Spaces:
Build error
Build error
Duplicate from huggingface/call-sentiment-demo
Browse filesCo-authored-by: Kunal Tangri <[email protected]>
- .gitattributes +31 -0
- Customer_Support_Call.wav +3 -0
- README.md +13 -0
- app.py +286 -0
- example_audio.wav +3 -0
- packages.txt +2 -0
- requirements.txt +10 -0
- short-take-1.wav +3 -0
- utils.py +33 -0
.gitattributes
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
example_audio.wav filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
short-take-1.wav filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
Customer_Support_Call.wav filter=lfs diff=lfs merge=lfs -text
|
Customer_Support_Call.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:db6489658bb04f84503531d628a67028de9d754ee0b18cf229f39deec7828001
|
| 3 |
+
size 31497612
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Call Sentiment Blocks 2
|
| 3 |
+
emoji: 🐠
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 2.9b23
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
duplicated_from: huggingface/call-sentiment-demo
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
ADDED
|
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import functools
|
| 4 |
+
|
| 5 |
+
import requests
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import plotly.express as px
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import gradio as gr
|
| 11 |
+
from transformers import pipeline, Wav2Vec2ProcessorWithLM
|
| 12 |
+
from pyannote.audio import Pipeline
|
| 13 |
+
from librosa import load, resample
|
| 14 |
+
from rpunct import RestorePuncts
|
| 15 |
+
|
| 16 |
+
from utils import split_into_sentences
|
| 17 |
+
|
| 18 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 19 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 20 |
+
|
| 21 |
+
# summarization is done over inference API
|
| 22 |
+
headers = {"Authorization": f"Bearer {os.environ['HF_TOKEN']}"}
|
| 23 |
+
summarization_url = (
|
| 24 |
+
"https://api-inference.huggingface.co/models/knkarthick/MEETING_SUMMARY"
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# There was an error related to Non-english text being detected,
|
| 28 |
+
# so this regular expression gets rid of any weird character.
|
| 29 |
+
# This might be completely unnecessary.
|
| 30 |
+
eng_pattern = r"[^\d\s\w'\.\,\?]"
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def summarize(diarized, check):
|
| 34 |
+
"""
|
| 35 |
+
diarized: a list of tuples. Each tuple has a string to be displayed and a label for highlighting.
|
| 36 |
+
The start/end times are not highlighted [(speaker text, speaker id), (start time/end time, None)]
|
| 37 |
+
check is a list of speaker ids whose speech will get summarized
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
if len(check) == 0:
|
| 41 |
+
return ""
|
| 42 |
+
|
| 43 |
+
text = ""
|
| 44 |
+
for d in diarized:
|
| 45 |
+
if len(check) == 2 and d[1] is not None:
|
| 46 |
+
text += f"\n{d[1]}: {d[0]}"
|
| 47 |
+
elif d[1] in check:
|
| 48 |
+
text += f"\n{d[0]}"
|
| 49 |
+
|
| 50 |
+
# inner function cached because outer function cannot be cached
|
| 51 |
+
@functools.lru_cache(maxsize=128)
|
| 52 |
+
def call_summarize_api(text):
|
| 53 |
+
payload = {
|
| 54 |
+
"inputs": text,
|
| 55 |
+
"options": {
|
| 56 |
+
"use_gpu": False,
|
| 57 |
+
"wait_for_model": True,
|
| 58 |
+
},
|
| 59 |
+
}
|
| 60 |
+
response = requests.post(summarization_url, headers=headers, json=payload)
|
| 61 |
+
return response.json()[0]["summary_text"]
|
| 62 |
+
|
| 63 |
+
return call_summarize_api(text)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# Audio components
|
| 67 |
+
asr_model = "patrickvonplaten/wav2vec2-base-960h-4-gram"
|
| 68 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(asr_model)
|
| 69 |
+
asr = pipeline(
|
| 70 |
+
"automatic-speech-recognition",
|
| 71 |
+
model=asr_model,
|
| 72 |
+
tokenizer=processor.tokenizer,
|
| 73 |
+
feature_extractor=processor.feature_extractor,
|
| 74 |
+
decoder=processor.decoder,
|
| 75 |
+
device=device,
|
| 76 |
+
)
|
| 77 |
+
speaker_segmentation = Pipeline.from_pretrained("pyannote/speaker-segmentation")
|
| 78 |
+
rpunct = RestorePuncts()
|
| 79 |
+
|
| 80 |
+
# Text components
|
| 81 |
+
emotion_pipeline = pipeline(
|
| 82 |
+
"text-classification",
|
| 83 |
+
model="bhadresh-savani/distilbert-base-uncased-emotion",
|
| 84 |
+
device=device,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
EXAMPLES = [["example_audio.wav"], ["Customer_Support_Call.wav"]]
|
| 88 |
+
|
| 89 |
+
# display if the sentiment value is above these thresholds
|
| 90 |
+
thresholds = {
|
| 91 |
+
"joy": 0.99,
|
| 92 |
+
"anger": 0.95,
|
| 93 |
+
"surprise": 0.95,
|
| 94 |
+
"sadness": 0.98,
|
| 95 |
+
"fear": 0.95,
|
| 96 |
+
"love": 0.99,
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def speech_to_text(speech):
|
| 101 |
+
speaker_output = speaker_segmentation(speech)
|
| 102 |
+
speech, sampling_rate = load(speech)
|
| 103 |
+
if sampling_rate != 16000:
|
| 104 |
+
speech = resample(speech, sampling_rate, 16000)
|
| 105 |
+
text = asr(speech, return_timestamps="word")
|
| 106 |
+
chunks = text["chunks"]
|
| 107 |
+
|
| 108 |
+
diarized_output = []
|
| 109 |
+
i = 0
|
| 110 |
+
speaker_counter = 0
|
| 111 |
+
|
| 112 |
+
# New iteration every time the speaker changes
|
| 113 |
+
for turn, _, _ in speaker_output.itertracks(yield_label=True):
|
| 114 |
+
|
| 115 |
+
speaker = "Customer" if speaker_counter % 2 == 0 else "Support"
|
| 116 |
+
diarized = ""
|
| 117 |
+
while i < len(chunks) and chunks[i]["timestamp"][1] <= turn.end:
|
| 118 |
+
diarized += chunks[i]["text"].lower() + " "
|
| 119 |
+
i += 1
|
| 120 |
+
|
| 121 |
+
if diarized != "":
|
| 122 |
+
diarized = rpunct.punctuate(re.sub(eng_pattern, "", diarized), lang="en")
|
| 123 |
+
|
| 124 |
+
diarized_output.extend(
|
| 125 |
+
[
|
| 126 |
+
(diarized, speaker),
|
| 127 |
+
("from {:.2f}-{:.2f}".format(turn.start, turn.end), None),
|
| 128 |
+
]
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
speaker_counter += 1
|
| 132 |
+
|
| 133 |
+
return diarized_output
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def sentiment(diarized):
|
| 137 |
+
"""
|
| 138 |
+
diarized: a list of tuples. Each tuple has a string to be displayed and a label for highlighting.
|
| 139 |
+
The start/end times are not highlighted [(speaker text, speaker id), (start time/end time, None)]
|
| 140 |
+
|
| 141 |
+
This function gets the customer's sentiment and returns a list for highlighted text as well
|
| 142 |
+
as a plot of sentiment over time.
|
| 143 |
+
"""
|
| 144 |
+
|
| 145 |
+
customer_sentiments = []
|
| 146 |
+
|
| 147 |
+
to_plot = []
|
| 148 |
+
plot_sentences = []
|
| 149 |
+
|
| 150 |
+
# used to set the x range of ticks on the plot
|
| 151 |
+
x_min = 100
|
| 152 |
+
x_max = 0
|
| 153 |
+
|
| 154 |
+
for i in range(0, len(diarized), 2):
|
| 155 |
+
speaker_speech, speaker_id = diarized[i]
|
| 156 |
+
times, _ = diarized[i + 1]
|
| 157 |
+
|
| 158 |
+
sentences = split_into_sentences(speaker_speech)
|
| 159 |
+
start_time, end_time = times[5:].split("-")
|
| 160 |
+
start_time, end_time = float(start_time), float(end_time)
|
| 161 |
+
interval_size = (end_time - start_time) / len(sentences)
|
| 162 |
+
|
| 163 |
+
if "Customer" in speaker_id:
|
| 164 |
+
|
| 165 |
+
outputs = emotion_pipeline(sentences)
|
| 166 |
+
|
| 167 |
+
for idx, (o, t) in enumerate(zip(outputs, sentences)):
|
| 168 |
+
sent = "neutral"
|
| 169 |
+
if o["score"] > thresholds[o["label"]]:
|
| 170 |
+
customer_sentiments.append(
|
| 171 |
+
(t + f"({round(idx*interval_size+start_time,1)} s)", o["label"])
|
| 172 |
+
)
|
| 173 |
+
if o["label"] in {"joy", "love", "surprise"}:
|
| 174 |
+
sent = "positive"
|
| 175 |
+
elif o["label"] in {"sadness", "anger", "fear"}:
|
| 176 |
+
sent = "negative"
|
| 177 |
+
if sent != "neutral":
|
| 178 |
+
to_plot.append((start_time + idx * interval_size, sent))
|
| 179 |
+
plot_sentences.append(t)
|
| 180 |
+
|
| 181 |
+
if start_time < x_min:
|
| 182 |
+
x_min = start_time
|
| 183 |
+
if end_time > x_max:
|
| 184 |
+
x_max = end_time
|
| 185 |
+
|
| 186 |
+
x_min -= 5
|
| 187 |
+
x_max += 5
|
| 188 |
+
|
| 189 |
+
x, y = list(zip(*to_plot))
|
| 190 |
+
|
| 191 |
+
plot_df = pd.DataFrame(
|
| 192 |
+
data={
|
| 193 |
+
"x": x,
|
| 194 |
+
"y": y,
|
| 195 |
+
"sentence": plot_sentences,
|
| 196 |
+
}
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
fig = px.line(
|
| 200 |
+
plot_df,
|
| 201 |
+
x="x",
|
| 202 |
+
y="y",
|
| 203 |
+
hover_data={
|
| 204 |
+
"sentence": True,
|
| 205 |
+
"x": True,
|
| 206 |
+
"y": False,
|
| 207 |
+
},
|
| 208 |
+
labels={"x": "time (seconds)", "y": "sentiment"},
|
| 209 |
+
title=f"Customer sentiment over time",
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
fig = fig.update_yaxes(categoryorder="category ascending")
|
| 213 |
+
fig = fig.update_layout(
|
| 214 |
+
font=dict(
|
| 215 |
+
size=18,
|
| 216 |
+
),
|
| 217 |
+
xaxis_range=[x_min, x_max],
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
return customer_sentiments, fig
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
demo = gr.Blocks(enable_queue=True)
|
| 224 |
+
demo.encrypt = False
|
| 225 |
+
|
| 226 |
+
# for highlighting purposes
|
| 227 |
+
color_map = {
|
| 228 |
+
"joy": "green",
|
| 229 |
+
"anger": "red",
|
| 230 |
+
"surprise": "yellow",
|
| 231 |
+
"sadness": "blue",
|
| 232 |
+
"fear": "orange",
|
| 233 |
+
"love": "purple",
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
with demo:
|
| 237 |
+
with gr.Row():
|
| 238 |
+
with gr.Column():
|
| 239 |
+
audio = gr.Audio(label="Audio file", type="filepath")
|
| 240 |
+
with gr.Row():
|
| 241 |
+
btn = gr.Button("Transcribe")
|
| 242 |
+
with gr.Row():
|
| 243 |
+
examples = gr.components.Dataset(
|
| 244 |
+
components=[audio], samples=EXAMPLES, type="index"
|
| 245 |
+
)
|
| 246 |
+
with gr.Column():
|
| 247 |
+
gr.Markdown("**Call Transcript:**")
|
| 248 |
+
diarized = gr.HighlightedText(label="Call Transcript")
|
| 249 |
+
gr.Markdown("Choose speaker to summarize:")
|
| 250 |
+
check = gr.CheckboxGroup(
|
| 251 |
+
choices=["Customer", "Support"], show_label=False, type="value"
|
| 252 |
+
)
|
| 253 |
+
summary = gr.Textbox(lines=4)
|
| 254 |
+
sentiment_btn = gr.Button("Get Customer Sentiment")
|
| 255 |
+
analyzed = gr.HighlightedText(color_map=color_map)
|
| 256 |
+
plot = gr.Plot(label="Sentiment over time", type="plotly")
|
| 257 |
+
|
| 258 |
+
# when example button is clicked, convert audio file to text and diarize
|
| 259 |
+
btn.click(
|
| 260 |
+
speech_to_text,
|
| 261 |
+
audio,
|
| 262 |
+
[diarized],
|
| 263 |
+
status_tracker=gr.StatusTracker(cover_container=True),
|
| 264 |
+
)
|
| 265 |
+
# when summarize checkboxes are changed, create summary
|
| 266 |
+
check.change(summarize, [diarized, check], summary)
|
| 267 |
+
|
| 268 |
+
# when sentiment button clicked, display highlighted text and plot
|
| 269 |
+
sentiment_btn.click(sentiment, [diarized], [analyzed, plot])
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def cache_example(example):
|
| 273 |
+
processed_examples = audio.preprocess_example(example)
|
| 274 |
+
diarized_output = speech_to_text(example)
|
| 275 |
+
return processed_examples, diarized_output
|
| 276 |
+
|
| 277 |
+
cache = [cache_example(e[0]) for e in EXAMPLES]
|
| 278 |
+
|
| 279 |
+
def load_example(example_id):
|
| 280 |
+
return cache[example_id]
|
| 281 |
+
|
| 282 |
+
examples._click_no_postprocess(
|
| 283 |
+
load_example, inputs=[examples], outputs=[audio, diarized], queue=False
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
demo.launch(debug=1)
|
example_audio.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:43166418f743e61807c7681944bf344c4720924adb4e5879dfa954dc7ecc82b2
|
| 3 |
+
size 3202638
|
packages.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
libsndfile1
|
| 2 |
+
ffmpeg
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
librosa
|
| 4 |
+
pyctcdecode
|
| 5 |
+
pypi-kenlm
|
| 6 |
+
git+https://github.com/ktangri/rpunct.git
|
| 7 |
+
https://github.com/pyannote/pyannote-audio/archive/develop.zip
|
| 8 |
+
requests
|
| 9 |
+
speechbrain
|
| 10 |
+
plotly
|
short-take-1.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bf15193510fc5a5680fdfdffda6c7cc5b8595bdde3d267b9ef5223e62035a952
|
| 3 |
+
size 20079500
|
utils.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
alphabets= "([A-Za-z])"
|
| 3 |
+
prefixes = "(Mr|St|Mrs|Ms|Dr)[.]"
|
| 4 |
+
suffixes = "(Inc|Ltd|Jr|Sr|Co)"
|
| 5 |
+
starters = "(Mr|Mrs|Ms|Dr|He\s|She\s|It\s|They\s|Their\s|Our\s|We\s|But\s|However\s|That\s|This\s|Wherever)"
|
| 6 |
+
acronyms = "([A-Z][.][A-Z][.](?:[A-Z][.])?)"
|
| 7 |
+
websites = "[.](com|net|org|io|gov)"
|
| 8 |
+
|
| 9 |
+
def split_into_sentences(text):
|
| 10 |
+
text = " " + text + " "
|
| 11 |
+
text = text.replace("\n"," ")
|
| 12 |
+
text = re.sub(prefixes,"\\1<prd>",text)
|
| 13 |
+
text = re.sub(websites,"<prd>\\1",text)
|
| 14 |
+
if "Ph.D" in text: text = text.replace("Ph.D.","Ph<prd>D<prd>")
|
| 15 |
+
text = re.sub("\s" + alphabets + "[.] "," \\1<prd> ",text)
|
| 16 |
+
text = re.sub(acronyms+" "+starters,"\\1<stop> \\2",text)
|
| 17 |
+
text = re.sub(alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>\\3<prd>",text)
|
| 18 |
+
text = re.sub(alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>",text)
|
| 19 |
+
text = re.sub(" "+suffixes+"[.] "+starters," \\1<stop> \\2",text)
|
| 20 |
+
text = re.sub(" "+suffixes+"[.]"," \\1<prd>",text)
|
| 21 |
+
text = re.sub(" " + alphabets + "[.]"," \\1<prd>",text)
|
| 22 |
+
if "”" in text: text = text.replace(".”","”.")
|
| 23 |
+
if "\"" in text: text = text.replace(".\"","\".")
|
| 24 |
+
if "!" in text: text = text.replace("!\"","\"!")
|
| 25 |
+
if "?" in text: text = text.replace("?\"","\"?")
|
| 26 |
+
text = text.replace(".",".<stop>")
|
| 27 |
+
text = text.replace("?","?<stop>")
|
| 28 |
+
text = text.replace("!","!<stop>")
|
| 29 |
+
text = text.replace("<prd>",".")
|
| 30 |
+
sentences = text.split("<stop>")
|
| 31 |
+
sentences = sentences[:-1]
|
| 32 |
+
sentences = [s.strip() for s in sentences]
|
| 33 |
+
return sentences
|