File size: 2,992 Bytes
e85fecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
"""

Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR)

Copyright(c) 2023 lyuwenyu. All Rights Reserved.

"""

from typing import Any, Dict, List, Optional

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms.v2 as T

from ...core import GLOBAL_CONFIG, register
from ._transforms import EmptyTransform

torchvision.disable_beta_transforms_warning()


@register()
class Compose(T.Compose):
    def __init__(self, ops, policy=None) -> None:
        transforms = []
        if ops is not None:
            for op in ops:
                if isinstance(op, dict):
                    name = op.pop("type")
                    transform = getattr(
                        GLOBAL_CONFIG[name]["_pymodule"], GLOBAL_CONFIG[name]["_name"]
                    )(**op)
                    transforms.append(transform)
                    op["type"] = name

                elif isinstance(op, nn.Module):
                    transforms.append(op)

                else:
                    raise ValueError("")
        else:
            transforms = [
                EmptyTransform(),
            ]

        super().__init__(transforms=transforms)

        if policy is None:
            policy = {"name": "default"}

        self.policy = policy
        self.global_samples = 0

    def forward(self, *inputs: Any) -> Any:
        return self.get_forward(self.policy["name"])(*inputs)

    def get_forward(self, name):
        forwards = {
            "default": self.default_forward,
            "stop_epoch": self.stop_epoch_forward,
            "stop_sample": self.stop_sample_forward,
        }
        return forwards[name]

    def default_forward(self, *inputs: Any) -> Any:
        sample = inputs if len(inputs) > 1 else inputs[0]
        for transform in self.transforms:
            sample = transform(sample)
        return sample

    def stop_epoch_forward(self, *inputs: Any):
        sample = inputs if len(inputs) > 1 else inputs[0]
        dataset = sample[-1]
        cur_epoch = dataset.epoch
        policy_ops = self.policy["ops"]
        policy_epoch = self.policy["epoch"]

        for transform in self.transforms:
            if type(transform).__name__ in policy_ops and cur_epoch >= policy_epoch:
                pass
            else:
                sample = transform(sample)

        return sample

    def stop_sample_forward(self, *inputs: Any):
        sample = inputs if len(inputs) > 1 else inputs[0]
        dataset = sample[-1]

        cur_epoch = dataset.epoch
        policy_ops = self.policy["ops"]
        policy_sample = self.policy["sample"]

        for transform in self.transforms:
            if type(transform).__name__ in policy_ops and self.global_samples >= policy_sample:
                pass
            else:
                sample = transform(sample)

        self.global_samples += 1

        return sample