|
"""
|
|
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR)
|
|
Copyright(c) 2023 lyuwenyu. All Rights Reserved.
|
|
"""
|
|
|
|
import os
|
|
from typing import Callable, Optional
|
|
|
|
import torch
|
|
import torchvision
|
|
import torchvision.transforms.functional as TVF
|
|
from PIL import Image
|
|
from sympy import im
|
|
|
|
try:
|
|
from defusedxml.ElementTree import parse as ET_parse
|
|
except ImportError:
|
|
from xml.etree.ElementTree import parse as ET_parse
|
|
|
|
from ...core import register
|
|
from .._misc import convert_to_tv_tensor
|
|
from ._dataset import DetDataset
|
|
|
|
|
|
@register()
|
|
class VOCDetection(torchvision.datasets.VOCDetection, DetDataset):
|
|
__inject__ = [
|
|
"transforms",
|
|
]
|
|
|
|
def __init__(
|
|
self,
|
|
root: str,
|
|
ann_file: str = "trainval.txt",
|
|
label_file: str = "label_list.txt",
|
|
transforms: Optional[Callable] = None,
|
|
):
|
|
with open(os.path.join(root, ann_file), "r") as f:
|
|
lines = [x.strip() for x in f.readlines()]
|
|
lines = [x.split(" ") for x in lines]
|
|
|
|
self.images = [os.path.join(root, lin[0]) for lin in lines]
|
|
self.targets = [os.path.join(root, lin[1]) for lin in lines]
|
|
assert len(self.images) == len(self.targets)
|
|
|
|
with open(os.path.join(root + label_file), "r") as f:
|
|
labels = f.readlines()
|
|
labels = [lab.strip() for lab in labels]
|
|
|
|
self.transforms = transforms
|
|
self.labels_map = {lab: i for i, lab in enumerate(labels)}
|
|
|
|
def __getitem__(self, index: int):
|
|
image, target = self.load_item(index)
|
|
if self.transforms is not None:
|
|
image, target, _ = self.transforms(image, target, self)
|
|
|
|
return image, target
|
|
|
|
def load_item(self, index: int):
|
|
image = Image.open(self.images[index]).convert("RGB")
|
|
target = self.parse_voc_xml(ET_parse(self.annotations[index]).getroot())
|
|
|
|
output = {}
|
|
output["image_id"] = torch.tensor([index])
|
|
for k in ["area", "boxes", "labels", "iscrowd"]:
|
|
output[k] = []
|
|
|
|
for blob in target["annotation"]["object"]:
|
|
box = [float(v) for v in blob["bndbox"].values()]
|
|
output["boxes"].append(box)
|
|
output["labels"].append(blob["name"])
|
|
output["area"].append((box[2] - box[0]) * (box[3] - box[1]))
|
|
output["iscrowd"].append(0)
|
|
|
|
w, h = image.size
|
|
boxes = torch.tensor(output["boxes"]) if len(output["boxes"]) > 0 else torch.zeros(0, 4)
|
|
output["boxes"] = convert_to_tv_tensor(
|
|
boxes, "boxes", box_format="xyxy", spatial_size=[h, w]
|
|
)
|
|
output["labels"] = torch.tensor([self.labels_map[lab] for lab in output["labels"]])
|
|
output["area"] = torch.tensor(output["area"])
|
|
output["iscrowd"] = torch.tensor(output["iscrowd"])
|
|
output["orig_size"] = torch.tensor([w, h])
|
|
|
|
return image, output
|
|
|