|
""" "
|
|
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR)
|
|
Copyright(c) 2023 lyuwenyu. All Rights Reserved.
|
|
"""
|
|
|
|
import PIL
|
|
import numpy as np
|
|
import torch
|
|
import torch.utils.data
|
|
import torchvision
|
|
from typing import List, Dict
|
|
|
|
torchvision.disable_beta_transforms_warning()
|
|
|
|
__all__ = ["show_sample", "save_samples"]
|
|
|
|
def save_samples(samples: torch.Tensor, targets: List[Dict], output_dir: str, split: str, normalized: bool, box_fmt: str):
|
|
'''
|
|
normalized: whether the boxes are normalized to [0, 1]
|
|
box_fmt: 'xyxy', 'xywh', 'cxcywh', D-FINE uses 'cxcywh' for training, 'xyxy' for validation
|
|
'''
|
|
from torchvision.transforms.functional import to_pil_image
|
|
from torchvision.ops import box_convert
|
|
from pathlib import Path
|
|
from PIL import ImageDraw, ImageFont
|
|
import os
|
|
|
|
os.makedirs(Path(output_dir) / Path(f"{split}_samples"), exist_ok=True)
|
|
|
|
BOX_COLORS = [
|
|
"red", "blue", "green", "orange", "purple",
|
|
"cyan", "magenta", "yellow", "lime", "pink",
|
|
"teal", "lavender", "brown", "beige", "maroon",
|
|
"navy", "olive", "coral", "turquoise", "gold"
|
|
]
|
|
|
|
LABEL_TEXT_COLOR = "white"
|
|
|
|
font = ImageFont.load_default()
|
|
font.size = 32
|
|
|
|
for i, (sample, target) in enumerate(zip(samples, targets)):
|
|
sample_visualization = sample.clone().cpu()
|
|
target_boxes = target["boxes"].clone().cpu()
|
|
target_labels = target["labels"].clone().cpu()
|
|
target_image_id = target["image_id"].item()
|
|
target_image_path = target["image_path"]
|
|
target_image_path_stem = Path(target_image_path).stem
|
|
|
|
sample_visualization = to_pil_image(sample_visualization)
|
|
sample_visualization_w, sample_visualization_h = sample_visualization.size
|
|
|
|
|
|
if normalized:
|
|
target_boxes[:, 0] = target_boxes[:, 0] * sample_visualization_w
|
|
target_boxes[:, 2] = target_boxes[:, 2] * sample_visualization_w
|
|
target_boxes[:, 1] = target_boxes[:, 1] * sample_visualization_h
|
|
target_boxes[:, 3] = target_boxes[:, 3] * sample_visualization_h
|
|
|
|
|
|
target_boxes = box_convert(target_boxes, in_fmt=box_fmt, out_fmt="xyxy")
|
|
|
|
|
|
target_boxes[:, 0] = torch.clamp(target_boxes[:, 0], 0, sample_visualization_w)
|
|
target_boxes[:, 1] = torch.clamp(target_boxes[:, 1], 0, sample_visualization_h)
|
|
target_boxes[:, 2] = torch.clamp(target_boxes[:, 2], 0, sample_visualization_w)
|
|
target_boxes[:, 3] = torch.clamp(target_boxes[:, 3], 0, sample_visualization_h)
|
|
|
|
target_boxes = target_boxes.numpy().astype(np.int32)
|
|
target_labels = target_labels.numpy().astype(np.int32)
|
|
|
|
draw = ImageDraw.Draw(sample_visualization)
|
|
|
|
|
|
for box, label in zip(target_boxes, target_labels):
|
|
x1, y1, x2, y2 = box
|
|
|
|
|
|
box_color = BOX_COLORS[int(label) % len(BOX_COLORS)]
|
|
|
|
|
|
draw.rectangle([x1, y1, x2, y2], outline=box_color, width=3)
|
|
|
|
label_text = f"{label}"
|
|
|
|
|
|
text_width, text_height = draw.textbbox((0, 0), label_text, font=font)[2:4]
|
|
|
|
|
|
padding = 2
|
|
draw.rectangle(
|
|
[x1, y1 - text_height - padding * 2, x1 + text_width + padding * 2, y1],
|
|
fill=box_color
|
|
)
|
|
|
|
|
|
draw.text((x1 + padding, y1 - text_height - padding), label_text,
|
|
fill=LABEL_TEXT_COLOR, font=font)
|
|
|
|
save_path = Path(output_dir) / f"{split}_samples" / f"{target_image_id}_{target_image_path_stem}.webp"
|
|
sample_visualization.save(save_path)
|
|
|
|
def show_sample(sample):
|
|
"""for coco dataset/dataloader"""
|
|
import matplotlib.pyplot as plt
|
|
from torchvision.transforms.v2 import functional as F
|
|
from torchvision.utils import draw_bounding_boxes
|
|
|
|
image, target = sample
|
|
if isinstance(image, PIL.Image.Image):
|
|
image = F.to_image_tensor(image)
|
|
|
|
image = F.convert_dtype(image, torch.uint8)
|
|
annotated_image = draw_bounding_boxes(image, target["boxes"], colors="yellow", width=3)
|
|
|
|
fig, ax = plt.subplots()
|
|
ax.imshow(annotated_image.permute(1, 2, 0).numpy())
|
|
ax.set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])
|
|
fig.tight_layout()
|
|
fig.show()
|
|
plt.show()
|
|
|