|
"""
|
|
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR)
|
|
Copyright(c) 2023 lyuwenyu. All Rights Reserved.
|
|
"""
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from ...core import register
|
|
|
|
__all__ = ["Classification", "ClassHead"]
|
|
|
|
|
|
@register()
|
|
class Classification(torch.nn.Module):
|
|
__inject__ = ["backbone", "head"]
|
|
|
|
def __init__(self, backbone: nn.Module, head: nn.Module = None):
|
|
super().__init__()
|
|
|
|
self.backbone = backbone
|
|
self.head = head
|
|
|
|
def forward(self, x):
|
|
x = self.backbone(x)
|
|
|
|
if self.head is not None:
|
|
x = self.head(x)
|
|
|
|
return x
|
|
|
|
|
|
@register()
|
|
class ClassHead(nn.Module):
|
|
def __init__(self, hidden_dim, num_classes):
|
|
super().__init__()
|
|
self.pool = nn.AdaptiveAvgPool2d(1)
|
|
self.proj = nn.Linear(hidden_dim, num_classes)
|
|
|
|
def forward(self, x):
|
|
x = x[0] if isinstance(x, (list, tuple)) else x
|
|
x = self.pool(x)
|
|
x = x.reshape(x.shape[0], -1)
|
|
x = self.proj(x)
|
|
return x
|
|
|