|
"""
|
|
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR)
|
|
Copyright(c) 2023 lyuwenyu. All Rights Reserved.
|
|
"""
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class ConvNormLayer(nn.Module):
|
|
def __init__(self, ch_in, ch_out, kernel_size, stride, padding=None, bias=False, act=None):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(
|
|
ch_in,
|
|
ch_out,
|
|
kernel_size,
|
|
stride,
|
|
padding=(kernel_size - 1) // 2 if padding is None else padding,
|
|
bias=bias,
|
|
)
|
|
self.norm = nn.BatchNorm2d(ch_out)
|
|
self.act = nn.Identity() if act is None else get_activation(act)
|
|
|
|
def forward(self, x):
|
|
return self.act(self.norm(self.conv(x)))
|
|
|
|
|
|
class FrozenBatchNorm2d(nn.Module):
|
|
"""copy and modified from https://github.com/facebookresearch/detr/blob/master/models/backbone.py
|
|
BatchNorm2d where the batch statistics and the affine parameters are fixed.
|
|
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
|
|
without which any other models than torchvision.models.resnet[18,34,50,101]
|
|
produce nans.
|
|
"""
|
|
|
|
def __init__(self, num_features, eps=1e-5):
|
|
super(FrozenBatchNorm2d, self).__init__()
|
|
n = num_features
|
|
self.register_buffer("weight", torch.ones(n))
|
|
self.register_buffer("bias", torch.zeros(n))
|
|
self.register_buffer("running_mean", torch.zeros(n))
|
|
self.register_buffer("running_var", torch.ones(n))
|
|
self.eps = eps
|
|
self.num_features = n
|
|
|
|
def _load_from_state_dict(
|
|
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
|
):
|
|
num_batches_tracked_key = prefix + "num_batches_tracked"
|
|
if num_batches_tracked_key in state_dict:
|
|
del state_dict[num_batches_tracked_key]
|
|
|
|
super(FrozenBatchNorm2d, self)._load_from_state_dict(
|
|
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
|
)
|
|
|
|
def forward(self, x):
|
|
|
|
|
|
w = self.weight.reshape(1, -1, 1, 1)
|
|
b = self.bias.reshape(1, -1, 1, 1)
|
|
rv = self.running_var.reshape(1, -1, 1, 1)
|
|
rm = self.running_mean.reshape(1, -1, 1, 1)
|
|
scale = w * (rv + self.eps).rsqrt()
|
|
bias = b - rm * scale
|
|
return x * scale + bias
|
|
|
|
def extra_repr(self):
|
|
return "{num_features}, eps={eps}".format(**self.__dict__)
|
|
|
|
|
|
def freeze_batch_norm2d(module: nn.Module) -> nn.Module:
|
|
if isinstance(module, nn.BatchNorm2d):
|
|
module = FrozenBatchNorm2d(module.num_features)
|
|
else:
|
|
for name, child in module.named_children():
|
|
_child = freeze_batch_norm2d(child)
|
|
if _child is not child:
|
|
setattr(module, name, _child)
|
|
return module
|
|
|
|
|
|
def get_activation(act: str, inplace: bool = True):
|
|
"""get activation"""
|
|
if act is None:
|
|
return nn.Identity()
|
|
|
|
elif isinstance(act, nn.Module):
|
|
return act
|
|
|
|
act = act.lower()
|
|
|
|
if act == "silu" or act == "swish":
|
|
m = nn.SiLU()
|
|
|
|
elif act == "relu":
|
|
m = nn.ReLU()
|
|
|
|
elif act == "leaky_relu":
|
|
m = nn.LeakyReLU()
|
|
|
|
elif act == "silu":
|
|
m = nn.SiLU()
|
|
|
|
elif act == "gelu":
|
|
m = nn.GELU()
|
|
|
|
elif act == "hardsigmoid":
|
|
m = nn.Hardsigmoid()
|
|
|
|
else:
|
|
raise RuntimeError("")
|
|
|
|
if hasattr(m, "inplace"):
|
|
m.inplace = inplace
|
|
|
|
return m
|
|
|