|
"""
|
|
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR)
|
|
Copyright(c) 2023 lyuwenyu. All Rights Reserved.
|
|
"""
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torchvision
|
|
|
|
__all__ = ["DetDETRPostProcessor"]
|
|
|
|
from .box_revert import BoxProcessFormat, box_revert
|
|
|
|
|
|
def mod(a, b):
|
|
out = a - a // b * b
|
|
return out
|
|
|
|
|
|
class DetDETRPostProcessor(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_classes=80,
|
|
use_focal_loss=True,
|
|
num_top_queries=300,
|
|
box_process_format=BoxProcessFormat.RESIZE,
|
|
) -> None:
|
|
super().__init__()
|
|
self.use_focal_loss = use_focal_loss
|
|
self.num_top_queries = num_top_queries
|
|
self.num_classes = int(num_classes)
|
|
self.box_process_format = box_process_format
|
|
self.deploy_mode = False
|
|
|
|
def extra_repr(self) -> str:
|
|
return f"use_focal_loss={self.use_focal_loss}, num_classes={self.num_classes}, num_top_queries={self.num_top_queries}"
|
|
|
|
def forward(self, outputs, **kwargs):
|
|
logits, boxes = outputs["pred_logits"], outputs["pred_boxes"]
|
|
|
|
if self.use_focal_loss:
|
|
scores = F.sigmoid(logits)
|
|
scores, index = torch.topk(scores.flatten(1), self.num_top_queries, dim=-1)
|
|
labels = index % self.num_classes
|
|
|
|
index = index // self.num_classes
|
|
boxes = boxes.gather(dim=1, index=index.unsqueeze(-1).repeat(1, 1, boxes.shape[-1]))
|
|
|
|
else:
|
|
scores = F.softmax(logits)[:, :, :-1]
|
|
scores, labels = scores.max(dim=-1)
|
|
if scores.shape[1] > self.num_top_queries:
|
|
scores, index = torch.topk(scores, self.num_top_queries, dim=-1)
|
|
labels = torch.gather(labels, dim=1, index=index)
|
|
boxes = torch.gather(
|
|
boxes, dim=1, index=index.unsqueeze(-1).tile(1, 1, boxes.shape[-1])
|
|
)
|
|
|
|
if kwargs is not None:
|
|
boxes = box_revert(
|
|
boxes,
|
|
in_fmt="cxcywh",
|
|
out_fmt="xyxy",
|
|
process_fmt=self.box_process_format,
|
|
normalized=True,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
if self.deploy_mode:
|
|
return labels, boxes, scores
|
|
|
|
results = []
|
|
for lab, box, sco in zip(labels, boxes, scores):
|
|
result = dict(labels=lab, boxes=box, scores=sco)
|
|
results.append(result)
|
|
|
|
return results
|
|
|
|
def deploy(
|
|
self,
|
|
):
|
|
self.eval()
|
|
self.deploy_mode = True
|
|
return self
|
|
|