|
"""
|
|
D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement
|
|
Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.
|
|
---------------------------------------------------------------------------------
|
|
Modified from RT-DETR (https://github.com/lyuwenyu/RT-DETR)
|
|
Copyright (c) 2023 lyuwenyu. All Rights Reserved.
|
|
"""
|
|
|
|
import math
|
|
from copy import deepcopy
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from ..core import register
|
|
from ..misc import dist_utils
|
|
|
|
__all__ = ["ModelEMA"]
|
|
|
|
|
|
@register()
|
|
class ModelEMA(object):
|
|
"""
|
|
Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
|
|
Keep a moving average of everything in the model state_dict (parameters and buffers).
|
|
This is intended to allow functionality like
|
|
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
|
A smoothed version of the weights is necessary for some training schemes to perform well.
|
|
This class is sensitive where it is initialized in the sequence of model init,
|
|
GPU assignment and distributed training wrappers.
|
|
"""
|
|
|
|
def __init__(
|
|
self, model: nn.Module, decay: float = 0.9999, warmups: int = 1000, start: int = 0
|
|
):
|
|
super().__init__()
|
|
|
|
self.module = deepcopy(dist_utils.de_parallel(model)).eval()
|
|
|
|
|
|
|
|
self.decay = decay
|
|
self.warmups = warmups
|
|
self.before_start = 0
|
|
self.start = start
|
|
self.updates = 0
|
|
if warmups == 0:
|
|
self.decay_fn = lambda x: decay
|
|
else:
|
|
self.decay_fn = lambda x: decay * (
|
|
1 - math.exp(-x / warmups)
|
|
)
|
|
|
|
for p in self.module.parameters():
|
|
p.requires_grad_(False)
|
|
|
|
def update(self, model: nn.Module):
|
|
if self.before_start < self.start:
|
|
self.before_start += 1
|
|
return
|
|
|
|
with torch.no_grad():
|
|
self.updates += 1
|
|
d = self.decay_fn(self.updates)
|
|
msd = dist_utils.de_parallel(model).state_dict()
|
|
for k, v in self.module.state_dict().items():
|
|
if v.dtype.is_floating_point:
|
|
v *= d
|
|
v += (1 - d) * msd[k].detach()
|
|
|
|
def to(self, *args, **kwargs):
|
|
self.module = self.module.to(*args, **kwargs)
|
|
return self
|
|
|
|
def state_dict(
|
|
self,
|
|
):
|
|
return dict(module=self.module.state_dict(), updates=self.updates)
|
|
|
|
def load_state_dict(self, state, strict=True):
|
|
self.module.load_state_dict(state["module"], strict=strict)
|
|
if "updates" in state:
|
|
self.updates = state["updates"]
|
|
|
|
def forwad(
|
|
self,
|
|
):
|
|
raise RuntimeError("ema...")
|
|
|
|
def extra_repr(self) -> str:
|
|
return f"decay={self.decay}, warmups={self.warmups}"
|
|
|
|
|
|
class ExponentialMovingAverage(torch.optim.swa_utils.AveragedModel):
|
|
"""Maintains moving averages of model parameters using an exponential decay.
|
|
``ema_avg = decay * avg_model_param + (1 - decay) * model_param``
|
|
`torch.optim.swa_utils.AveragedModel <https://pytorch.org/docs/stable/optim.html#custom-averaging-strategies>`_
|
|
is used to compute the EMA.
|
|
"""
|
|
|
|
def __init__(self, model, decay, device="cpu", use_buffers=True):
|
|
self.decay_fn = lambda x: decay * (1 - math.exp(-x / 2000))
|
|
|
|
def ema_avg(avg_model_param, model_param, num_averaged):
|
|
decay = self.decay_fn(num_averaged)
|
|
return decay * avg_model_param + (1 - decay) * model_param
|
|
|
|
super().__init__(model, device, ema_avg, use_buffers=use_buffers)
|
|
|