|
"""Copyright(c) 2023 lyuwenyu. All Rights Reserved.
|
|
Modifications Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.
|
|
"""
|
|
|
|
import torch
|
|
|
|
from .box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh
|
|
from .utils import inverse_sigmoid
|
|
|
|
|
|
def get_contrastive_denoising_training_group(
|
|
targets,
|
|
num_classes,
|
|
num_queries,
|
|
class_embed,
|
|
num_denoising=100,
|
|
label_noise_ratio=0.5,
|
|
box_noise_scale=1.0,
|
|
):
|
|
"""cnd"""
|
|
if num_denoising <= 0:
|
|
return None, None, None, None
|
|
|
|
num_gts = [len(t["labels"]) for t in targets]
|
|
device = targets[0]["labels"].device
|
|
|
|
max_gt_num = max(num_gts)
|
|
if max_gt_num == 0:
|
|
dn_meta = {"dn_positive_idx": None, "dn_num_group": 0, "dn_num_split": [0, num_queries]}
|
|
return None, None, None, dn_meta
|
|
|
|
num_group = num_denoising // max_gt_num
|
|
num_group = 1 if num_group == 0 else num_group
|
|
|
|
bs = len(num_gts)
|
|
|
|
input_query_class = torch.full([bs, max_gt_num], num_classes, dtype=torch.int32, device=device)
|
|
input_query_bbox = torch.zeros([bs, max_gt_num, 4], device=device)
|
|
pad_gt_mask = torch.zeros([bs, max_gt_num], dtype=torch.bool, device=device)
|
|
|
|
for i in range(bs):
|
|
num_gt = num_gts[i]
|
|
if num_gt > 0:
|
|
input_query_class[i, :num_gt] = targets[i]["labels"]
|
|
input_query_bbox[i, :num_gt] = targets[i]["boxes"]
|
|
pad_gt_mask[i, :num_gt] = 1
|
|
|
|
input_query_class = input_query_class.tile([1, 2 * num_group])
|
|
input_query_bbox = input_query_bbox.tile([1, 2 * num_group, 1])
|
|
pad_gt_mask = pad_gt_mask.tile([1, 2 * num_group])
|
|
|
|
negative_gt_mask = torch.zeros([bs, max_gt_num * 2, 1], device=device)
|
|
negative_gt_mask[:, max_gt_num:] = 1
|
|
negative_gt_mask = negative_gt_mask.tile([1, num_group, 1])
|
|
positive_gt_mask = 1 - negative_gt_mask
|
|
|
|
positive_gt_mask = positive_gt_mask.squeeze(-1) * pad_gt_mask
|
|
dn_positive_idx = torch.nonzero(positive_gt_mask)[:, 1]
|
|
dn_positive_idx = torch.split(dn_positive_idx, [n * num_group for n in num_gts])
|
|
|
|
num_denoising = int(max_gt_num * 2 * num_group)
|
|
|
|
if label_noise_ratio > 0:
|
|
mask = torch.rand_like(input_query_class, dtype=torch.float) < (label_noise_ratio * 0.5)
|
|
|
|
new_label = torch.randint_like(mask, 0, num_classes, dtype=input_query_class.dtype)
|
|
input_query_class = torch.where(mask & pad_gt_mask, new_label, input_query_class)
|
|
|
|
if box_noise_scale > 0:
|
|
known_bbox = box_cxcywh_to_xyxy(input_query_bbox)
|
|
diff = torch.tile(input_query_bbox[..., 2:] * 0.5, [1, 1, 2]) * box_noise_scale
|
|
rand_sign = torch.randint_like(input_query_bbox, 0, 2) * 2.0 - 1.0
|
|
rand_part = torch.rand_like(input_query_bbox)
|
|
rand_part = (rand_part + 1.0) * negative_gt_mask + rand_part * (1 - negative_gt_mask)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
known_bbox += rand_sign * rand_part * diff
|
|
known_bbox = torch.clip(known_bbox, min=0.0, max=1.0)
|
|
input_query_bbox = box_xyxy_to_cxcywh(known_bbox)
|
|
input_query_bbox[input_query_bbox < 0] *= -1
|
|
input_query_bbox_unact = inverse_sigmoid(input_query_bbox)
|
|
|
|
input_query_logits = class_embed(input_query_class)
|
|
|
|
tgt_size = num_denoising + num_queries
|
|
attn_mask = torch.full([tgt_size, tgt_size], False, dtype=torch.bool, device=device)
|
|
|
|
attn_mask[num_denoising:, :num_denoising] = True
|
|
|
|
|
|
for i in range(num_group):
|
|
if i == 0:
|
|
attn_mask[
|
|
max_gt_num * 2 * i : max_gt_num * 2 * (i + 1),
|
|
max_gt_num * 2 * (i + 1) : num_denoising,
|
|
] = True
|
|
if i == num_group - 1:
|
|
attn_mask[max_gt_num * 2 * i : max_gt_num * 2 * (i + 1), : max_gt_num * i * 2] = True
|
|
else:
|
|
attn_mask[
|
|
max_gt_num * 2 * i : max_gt_num * 2 * (i + 1),
|
|
max_gt_num * 2 * (i + 1) : num_denoising,
|
|
] = True
|
|
attn_mask[max_gt_num * 2 * i : max_gt_num * 2 * (i + 1), : max_gt_num * 2 * i] = True
|
|
|
|
dn_meta = {
|
|
"dn_positive_idx": dn_positive_idx,
|
|
"dn_num_group": num_group,
|
|
"dn_num_split": [num_denoising, num_queries],
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
return input_query_logits, input_query_bbox_unact, attn_mask, dn_meta
|
|
|