|
"""
|
|
Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.
|
|
"""
|
|
|
|
import torch.nn as nn
|
|
|
|
from ...core import register
|
|
|
|
__all__ = [
|
|
"DFINE",
|
|
]
|
|
|
|
|
|
@register()
|
|
class DFINE(nn.Module):
|
|
__inject__ = [
|
|
"backbone",
|
|
"encoder",
|
|
"decoder",
|
|
]
|
|
|
|
def __init__(
|
|
self,
|
|
backbone: nn.Module,
|
|
encoder: nn.Module,
|
|
decoder: nn.Module,
|
|
):
|
|
super().__init__()
|
|
self.backbone = backbone
|
|
self.decoder = decoder
|
|
self.encoder = encoder
|
|
|
|
def forward(self, x, targets=None):
|
|
x = self.backbone(x)
|
|
x = self.encoder(x)
|
|
x = self.decoder(x, targets)
|
|
|
|
return x
|
|
|
|
def deploy(
|
|
self,
|
|
):
|
|
self.eval()
|
|
for m in self.modules():
|
|
if hasattr(m, "convert_to_deploy"):
|
|
m.convert_to_deploy()
|
|
return self
|
|
|