|
"""
|
|
Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
Modules to compute the matching cost and solve the corresponding LSAP.
|
|
|
|
Copyright (c) 2024 The D-FINE Authors All Rights Reserved.
|
|
"""
|
|
|
|
from typing import Dict
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from scipy.optimize import linear_sum_assignment
|
|
|
|
from ...core import register
|
|
from .box_ops import box_cxcywh_to_xyxy, generalized_box_iou
|
|
|
|
|
|
@register()
|
|
class HungarianMatcher(nn.Module):
|
|
"""This class computes an assignment between the targets and the predictions of the network
|
|
|
|
For efficiency reasons, the targets don't include the no_object. Because of this, in general,
|
|
there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions,
|
|
while the others are un-matched (and thus treated as non-objects).
|
|
"""
|
|
|
|
__share__ = [
|
|
"use_focal_loss",
|
|
]
|
|
|
|
def __init__(self, weight_dict, use_focal_loss=False, alpha=0.25, gamma=2.0):
|
|
"""Creates the matcher
|
|
|
|
Params:
|
|
cost_class: This is the relative weight of the classification error in the matching cost
|
|
cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost
|
|
cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost
|
|
"""
|
|
super().__init__()
|
|
self.cost_class = weight_dict["cost_class"]
|
|
self.cost_bbox = weight_dict["cost_bbox"]
|
|
self.cost_giou = weight_dict["cost_giou"]
|
|
|
|
self.use_focal_loss = use_focal_loss
|
|
self.alpha = alpha
|
|
self.gamma = gamma
|
|
|
|
assert (
|
|
self.cost_class != 0 or self.cost_bbox != 0 or self.cost_giou != 0
|
|
), "all costs cant be 0"
|
|
|
|
@torch.no_grad()
|
|
def forward(self, outputs: Dict[str, torch.Tensor], targets, return_topk=False):
|
|
"""Performs the matching
|
|
|
|
Params:
|
|
outputs: This is a dict that contains at least these entries:
|
|
"pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
|
|
"pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates
|
|
|
|
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
|
|
"labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
|
|
objects in the target) containing the class labels
|
|
"boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates
|
|
|
|
Returns:
|
|
A list of size batch_size, containing tuples of (index_i, index_j) where:
|
|
- index_i is the indices of the selected predictions (in order)
|
|
- index_j is the indices of the corresponding selected targets (in order)
|
|
For each batch element, it holds:
|
|
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
|
|
"""
|
|
bs, num_queries = outputs["pred_logits"].shape[:2]
|
|
|
|
|
|
if self.use_focal_loss:
|
|
out_prob = F.sigmoid(outputs["pred_logits"].flatten(0, 1))
|
|
else:
|
|
out_prob = (
|
|
outputs["pred_logits"].flatten(0, 1).softmax(-1)
|
|
)
|
|
|
|
out_bbox = outputs["pred_boxes"].flatten(0, 1)
|
|
|
|
|
|
tgt_ids = torch.cat([v["labels"] for v in targets])
|
|
tgt_bbox = torch.cat([v["boxes"] for v in targets])
|
|
|
|
|
|
|
|
|
|
if self.use_focal_loss:
|
|
out_prob = out_prob[:, tgt_ids]
|
|
neg_cost_class = (
|
|
(1 - self.alpha) * (out_prob**self.gamma) * (-(1 - out_prob + 1e-8).log())
|
|
)
|
|
pos_cost_class = (
|
|
self.alpha * ((1 - out_prob) ** self.gamma) * (-(out_prob + 1e-8).log())
|
|
)
|
|
cost_class = pos_cost_class - neg_cost_class
|
|
else:
|
|
cost_class = -out_prob[:, tgt_ids]
|
|
|
|
|
|
cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1)
|
|
|
|
|
|
cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox))
|
|
|
|
|
|
C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou
|
|
C = C.view(bs, num_queries, -1).cpu()
|
|
|
|
sizes = [len(v["boxes"]) for v in targets]
|
|
C = torch.nan_to_num(C, nan=1.0)
|
|
indices_pre = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]
|
|
indices = [
|
|
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64))
|
|
for i, j in indices_pre
|
|
]
|
|
|
|
|
|
if return_topk:
|
|
return {
|
|
"indices_o2m": self.get_top_k_matches(
|
|
C, sizes=sizes, k=return_topk, initial_indices=indices_pre
|
|
)
|
|
}
|
|
|
|
return {"indices": indices}
|
|
|
|
def get_top_k_matches(self, C, sizes, k=1, initial_indices=None):
|
|
indices_list = []
|
|
|
|
for i in range(k):
|
|
indices_k = (
|
|
[linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]
|
|
if i > 0
|
|
else initial_indices
|
|
)
|
|
indices_list.append(
|
|
[
|
|
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64))
|
|
for i, j in indices_k
|
|
]
|
|
)
|
|
for c, idx_k in zip(C.split(sizes, -1), indices_k):
|
|
idx_k = np.stack(idx_k)
|
|
c[:, idx_k] = 1e6
|
|
indices_list = [
|
|
(
|
|
torch.cat([indices_list[i][j][0] for i in range(k)], dim=0),
|
|
torch.cat([indices_list[i][j][1] for i in range(k)], dim=0),
|
|
)
|
|
for j in range(len(sizes))
|
|
]
|
|
|
|
return indices_list
|
|
|