""" Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR) Copyright(c) 2023 lyuwenyu. All Rights Reserved. """ from typing import Any, Dict, List, Optional import PIL import PIL.Image import torch import torch.nn as nn import torchvision import torchvision.transforms.v2 as T import torchvision.transforms.v2.functional as F from ...core import register from .._misc import ( BoundingBoxes, Image, Mask, SanitizeBoundingBoxes, Video, _boxes_keys, convert_to_tv_tensor, ) torchvision.disable_beta_transforms_warning() RandomPhotometricDistort = register()(T.RandomPhotometricDistort) RandomZoomOut = register()(T.RandomZoomOut) RandomHorizontalFlip = register()(T.RandomHorizontalFlip) Resize = register()(T.Resize) # ToImageTensor = register()(T.ToImageTensor) # ConvertDtype = register()(T.ConvertDtype) # PILToTensor = register()(T.PILToTensor) SanitizeBoundingBoxes = register(name="SanitizeBoundingBoxes")(SanitizeBoundingBoxes) RandomCrop = register()(T.RandomCrop) Normalize = register()(T.Normalize) @register() class EmptyTransform(T.Transform): def __init__( self, ) -> None: super().__init__() def forward(self, *inputs): inputs = inputs if len(inputs) > 1 else inputs[0] return inputs @register() class PadToSize(T.Pad): _transformed_types = ( PIL.Image.Image, Image, Video, Mask, BoundingBoxes, ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: sp = F.get_spatial_size(flat_inputs[0]) h, w = self.size[1] - sp[0], self.size[0] - sp[1] self.padding = [0, 0, w, h] return dict(padding=self.padding) def __init__(self, size, fill=0, padding_mode="constant") -> None: if isinstance(size, int): size = (size, size) self.size = size super().__init__(0, fill, padding_mode) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: fill = self._fill[type(inpt)] padding = params["padding"] return F.pad(inpt, padding=padding, fill=fill, padding_mode=self.padding_mode) # type: ignore[arg-type] def __call__(self, *inputs: Any) -> Any: outputs = super().forward(*inputs) if len(outputs) > 1 and isinstance(outputs[1], dict): outputs[1]["padding"] = torch.tensor(self.padding) return outputs @register() class RandomIoUCrop(T.RandomIoUCrop): def __init__( self, min_scale: float = 0.3, max_scale: float = 1, min_aspect_ratio: float = 0.5, max_aspect_ratio: float = 2, sampler_options: Optional[List[float]] = None, trials: int = 40, p: float = 1.0, ): super().__init__( min_scale, max_scale, min_aspect_ratio, max_aspect_ratio, sampler_options, trials ) self.p = p def __call__(self, *inputs: Any) -> Any: if torch.rand(1) >= self.p: return inputs if len(inputs) > 1 else inputs[0] return super().forward(*inputs) @register() class ConvertBoxes(T.Transform): _transformed_types = (BoundingBoxes,) def __init__(self, fmt="", normalize=False) -> None: super().__init__() self.fmt = fmt self.normalize = normalize def transform(self, inpt: Any, params: Dict[str, Any]) -> Any: return self._transform(inpt, params) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: spatial_size = getattr(inpt, _boxes_keys[1]) if self.fmt: in_fmt = inpt.format.value.lower() inpt = torchvision.ops.box_convert(inpt, in_fmt=in_fmt, out_fmt=self.fmt.lower()) inpt = convert_to_tv_tensor( inpt, key="boxes", box_format=self.fmt.upper(), spatial_size=spatial_size ) if self.normalize: inpt = inpt / torch.tensor(spatial_size[::-1]).tile(2)[None] return inpt @register() class ConvertPILImage(T.Transform): _transformed_types = (PIL.Image.Image,) def __init__(self, dtype="float32", scale=True) -> None: super().__init__() self.dtype = dtype self.scale = scale def transform(self, inpt: Any, params: Dict[str, Any]) -> Any: return self._transform(inpt, params) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: inpt = F.pil_to_tensor(inpt) if self.dtype == "float32": inpt = inpt.float() if self.scale: inpt = inpt / 255.0 inpt = Image(inpt) return inpt