Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import json
|
5 |
+
import re
|
6 |
+
from datetime import datetime
|
7 |
+
from typing import List, Dict, Tuple
|
8 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
9 |
+
import plotly.graph_objects as go
|
10 |
+
from plotly.subplots import make_subplots
|
11 |
+
import sqlite3
|
12 |
+
import hashlib
|
13 |
+
import time
|
14 |
+
|
15 |
+
# Initialize models
|
16 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest")
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
|
18 |
+
|
19 |
+
class ReviewAnalyzer:
|
20 |
+
def __init__(self):
|
21 |
+
self.db_path = "reviews.db"
|
22 |
+
self._init_db()
|
23 |
+
|
24 |
+
def _init_db(self):
|
25 |
+
conn = sqlite3.connect(self.db_path)
|
26 |
+
conn.execute('''
|
27 |
+
CREATE TABLE IF NOT EXISTS usage_log (
|
28 |
+
id INTEGER PRIMARY KEY,
|
29 |
+
user_id TEXT,
|
30 |
+
timestamp DATETIME,
|
31 |
+
analysis_type TEXT,
|
32 |
+
items_count INTEGER
|
33 |
+
)
|
34 |
+
''')
|
35 |
+
conn.close()
|
36 |
+
|
37 |
+
def preprocess_text(self, text: str) -> str:
|
38 |
+
"""Clean and preprocess review text"""
|
39 |
+
text = re.sub(r'http\S+', '', text) # Remove URLs
|
40 |
+
text = re.sub(r'[^\w\s]', '', text) # Remove special chars
|
41 |
+
text = text.strip().lower()
|
42 |
+
return text
|
43 |
+
|
44 |
+
def analyze_sentiment(self, reviews: List[str]) -> Dict:
|
45 |
+
"""Analyze sentiment of reviews"""
|
46 |
+
results = []
|
47 |
+
sentiments = {'positive': 0, 'negative': 0, 'neutral': 0}
|
48 |
+
|
49 |
+
for review in reviews:
|
50 |
+
if not review.strip():
|
51 |
+
continue
|
52 |
+
|
53 |
+
clean_review = self.preprocess_text(review)
|
54 |
+
result = sentiment_analyzer(clean_review)[0]
|
55 |
+
|
56 |
+
label = result['label'].lower()
|
57 |
+
score = result['score']
|
58 |
+
|
59 |
+
# Map labels to standard format
|
60 |
+
if 'pos' in label:
|
61 |
+
sentiment = 'positive'
|
62 |
+
elif 'neg' in label:
|
63 |
+
sentiment = 'negative'
|
64 |
+
else:
|
65 |
+
sentiment = 'neutral'
|
66 |
+
|
67 |
+
sentiments[sentiment] += 1
|
68 |
+
results.append({
|
69 |
+
'text': review[:100] + '...' if len(review) > 100 else review,
|
70 |
+
'sentiment': sentiment,
|
71 |
+
'confidence': round(score, 3)
|
72 |
+
})
|
73 |
+
|
74 |
+
total = len(results)
|
75 |
+
sentiment_percentages = {k: round(v/total*100, 1) for k, v in sentiments.items()}
|
76 |
+
|
77 |
+
return {
|
78 |
+
'summary': sentiment_percentages,
|
79 |
+
'details': results,
|
80 |
+
'total_reviews': total
|
81 |
+
}
|
82 |
+
|
83 |
+
def detect_fake_reviews(self, reviews: List[str]) -> Dict:
|
84 |
+
"""Detect potentially fake reviews"""
|
85 |
+
fake_scores = []
|
86 |
+
|
87 |
+
for review in reviews:
|
88 |
+
if not review.strip():
|
89 |
+
continue
|
90 |
+
|
91 |
+
# Simple fake detection heuristics
|
92 |
+
score = 0
|
93 |
+
|
94 |
+
# Length check
|
95 |
+
if len(review) < 20:
|
96 |
+
score += 0.3
|
97 |
+
|
98 |
+
# Repetitive words
|
99 |
+
words = review.lower().split()
|
100 |
+
unique_ratio = len(set(words)) / len(words) if words else 0
|
101 |
+
if unique_ratio < 0.5:
|
102 |
+
score += 0.4
|
103 |
+
|
104 |
+
# Excessive punctuation
|
105 |
+
punct_ratio = len(re.findall(r'[!?.]', review)) / len(review) if review else 0
|
106 |
+
if punct_ratio > 0.1:
|
107 |
+
score += 0.2
|
108 |
+
|
109 |
+
# Generic phrases
|
110 |
+
generic_phrases = ['amazing', 'perfect', 'best ever', 'highly recommend']
|
111 |
+
if any(phrase in review.lower() for phrase in generic_phrases):
|
112 |
+
score += 0.1
|
113 |
+
|
114 |
+
fake_scores.append({
|
115 |
+
'text': review[:100] + '...' if len(review) > 100 else review,
|
116 |
+
'fake_probability': min(round(score, 3), 1.0),
|
117 |
+
'status': 'suspicious' if score > 0.5 else 'authentic'
|
118 |
+
})
|
119 |
+
|
120 |
+
suspicious_count = sum(1 for item in fake_scores if item['fake_probability'] > 0.5)
|
121 |
+
|
122 |
+
return {
|
123 |
+
'summary': {
|
124 |
+
'total_reviews': len(fake_scores),
|
125 |
+
'suspicious_reviews': suspicious_count,
|
126 |
+
'authenticity_rate': round((len(fake_scores) - suspicious_count) / len(fake_scores) * 100, 1) if fake_scores else 0
|
127 |
+
},
|
128 |
+
'details': fake_scores
|
129 |
+
}
|
130 |
+
|
131 |
+
def assess_quality(self, reviews: List[str]) -> Dict:
|
132 |
+
"""Assess review quality"""
|
133 |
+
quality_scores = []
|
134 |
+
|
135 |
+
for review in reviews:
|
136 |
+
if not review.strip():
|
137 |
+
continue
|
138 |
+
|
139 |
+
score = 0
|
140 |
+
factors = {}
|
141 |
+
|
142 |
+
# Length factor
|
143 |
+
length_score = min(len(review) / 200, 1.0)
|
144 |
+
factors['length'] = round(length_score, 2)
|
145 |
+
score += length_score * 0.3
|
146 |
+
|
147 |
+
# Detail factor (specific words)
|
148 |
+
detail_words = ['because', 'however', 'although', 'specifically', 'particularly']
|
149 |
+
detail_score = min(sum(1 for word in detail_words if word in review.lower()) / 3, 1.0)
|
150 |
+
factors['detail'] = round(detail_score, 2)
|
151 |
+
score += detail_score * 0.3
|
152 |
+
|
153 |
+
# Structure factor
|
154 |
+
sentences = len(re.split(r'[.!?]', review))
|
155 |
+
structure_score = min(sentences / 5, 1.0)
|
156 |
+
factors['structure'] = round(structure_score, 2)
|
157 |
+
score += structure_score * 0.2
|
158 |
+
|
159 |
+
# Helpfulness factor
|
160 |
+
helpful_words = ['pros', 'cons', 'recommend', 'suggest', 'tip', 'advice']
|
161 |
+
helpful_score = min(sum(1 for word in helpful_words if word in review.lower()) / 2, 1.0)
|
162 |
+
factors['helpfulness'] = round(helpful_score, 2)
|
163 |
+
score += helpful_score * 0.2
|
164 |
+
|
165 |
+
quality_scores.append({
|
166 |
+
'text': review[:100] + '...' if len(review) > 100 else review,
|
167 |
+
'quality_score': round(score, 3),
|
168 |
+
'factors': factors,
|
169 |
+
'grade': 'A' if score > 0.8 else 'B' if score > 0.6 else 'C' if score > 0.4 else 'D'
|
170 |
+
})
|
171 |
+
|
172 |
+
avg_quality = sum(item['quality_score'] for item in quality_scores) / len(quality_scores) if quality_scores else 0
|
173 |
+
|
174 |
+
return {
|
175 |
+
'summary': {
|
176 |
+
'average_quality': round(avg_quality, 3),
|
177 |
+
'total_reviews': len(quality_scores),
|
178 |
+
'high_quality_count': sum(1 for item in quality_scores if item['quality_score'] > 0.7)
|
179 |
+
},
|
180 |
+
'details': quality_scores
|
181 |
+
}
|
182 |
+
|
183 |
+
def compare_competitors(self, product_a_reviews: List[str], product_b_reviews: List[str]) -> Tuple[Dict, go.Figure]:
|
184 |
+
"""Compare sentiment between two products"""
|
185 |
+
analysis_a = self.analyze_sentiment(product_a_reviews)
|
186 |
+
analysis_b = self.analyze_sentiment(product_b_reviews)
|
187 |
+
|
188 |
+
# Create comparison chart
|
189 |
+
fig = make_subplots(
|
190 |
+
rows=1, cols=2,
|
191 |
+
specs=[[{'type': 'pie'}, {'type': 'pie'}]],
|
192 |
+
subplot_titles=['Product A', 'Product B']
|
193 |
+
)
|
194 |
+
|
195 |
+
# Product A pie chart
|
196 |
+
fig.add_trace(go.Pie(
|
197 |
+
labels=list(analysis_a['summary'].keys()),
|
198 |
+
values=list(analysis_a['summary'].values()),
|
199 |
+
name="Product A"
|
200 |
+
), row=1, col=1)
|
201 |
+
|
202 |
+
# Product B pie chart
|
203 |
+
fig.add_trace(go.Pie(
|
204 |
+
labels=list(analysis_b['summary'].keys()),
|
205 |
+
values=list(analysis_b['summary'].values()),
|
206 |
+
name="Product B"
|
207 |
+
), row=1, col=2)
|
208 |
+
|
209 |
+
fig.update_layout(title_text="Sentiment Comparison")
|
210 |
+
|
211 |
+
comparison = {
|
212 |
+
'product_a': analysis_a,
|
213 |
+
'product_b': analysis_b,
|
214 |
+
'winner': 'Product A' if analysis_a['summary']['positive'] > analysis_b['summary']['positive'] else 'Product B'
|
215 |
+
}
|
216 |
+
|
217 |
+
return comparison, fig
|
218 |
+
|
219 |
+
def generate_report(self, analysis_data: Dict, report_type: str = "basic") -> str:
|
220 |
+
"""Generate analysis report"""
|
221 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
222 |
+
|
223 |
+
if report_type == "sentiment":
|
224 |
+
return f"""
|
225 |
+
# Sentiment Analysis Report
|
226 |
+
Generated: {timestamp}
|
227 |
+
|
228 |
+
## Summary
|
229 |
+
- Total Reviews: {analysis_data.get('total_reviews', 0)}
|
230 |
+
- Positive: {analysis_data.get('summary', {}).get('positive', 0)}%
|
231 |
+
- Negative: {analysis_data.get('summary', {}).get('negative', 0)}%
|
232 |
+
- Neutral: {analysis_data.get('summary', {}).get('neutral', 0)}%
|
233 |
+
|
234 |
+
## Key Insights
|
235 |
+
- Overall sentiment trend: {'Positive' if analysis_data.get('summary', {}).get('positive', 0) > 50 else 'Mixed'}
|
236 |
+
- Customer satisfaction level: {'High' if analysis_data.get('summary', {}).get('positive', 0) > 70 else 'Moderate' if analysis_data.get('summary', {}).get('positive', 0) > 40 else 'Low'}
|
237 |
+
|
238 |
+
## Recommendations
|
239 |
+
- Focus on addressing negative feedback themes
|
240 |
+
- Leverage positive reviews for marketing
|
241 |
+
- Monitor sentiment trends over time
|
242 |
+
"""
|
243 |
+
|
244 |
+
elif report_type == "fake":
|
245 |
+
return f"""
|
246 |
+
# Fake Review Detection Report
|
247 |
+
Generated: {timestamp}
|
248 |
+
|
249 |
+
## Summary
|
250 |
+
- Total Reviews Analyzed: {analysis_data.get('summary', {}).get('total_reviews', 0)}
|
251 |
+
- Suspicious Reviews: {analysis_data.get('summary', {}).get('suspicious_reviews', 0)}
|
252 |
+
- Authenticity Rate: {analysis_data.get('summary', {}).get('authenticity_rate', 0)}%
|
253 |
+
|
254 |
+
## Risk Assessment
|
255 |
+
- Review Quality: {'High Risk' if analysis_data.get('summary', {}).get('authenticity_rate', 0) < 70 else 'Low Risk'}
|
256 |
+
- Recommendation: {'Investigate suspicious reviews' if analysis_data.get('summary', {}).get('suspicious_reviews', 0) > 0 else 'Reviews appear authentic'}
|
257 |
+
"""
|
258 |
+
|
259 |
+
return "Report generated successfully"
|
260 |
+
|
261 |
+
# Global analyzer instance
|
262 |
+
analyzer = ReviewAnalyzer()
|
263 |
+
|
264 |
+
def process_reviews_input(text: str) -> List[str]:
|
265 |
+
"""Process review input text into list"""
|
266 |
+
if not text.strip():
|
267 |
+
return []
|
268 |
+
|
269 |
+
# Split by lines or by common separators
|
270 |
+
reviews = []
|
271 |
+
for line in text.split('\n'):
|
272 |
+
line = line.strip()
|
273 |
+
if line and len(line) > 10: # Minimum length check
|
274 |
+
reviews.append(line)
|
275 |
+
|
276 |
+
return reviews
|
277 |
+
|
278 |
+
def sentiment_analysis_interface(reviews_text: str):
|
279 |
+
"""Interface for sentiment analysis"""
|
280 |
+
if not reviews_text.strip():
|
281 |
+
return "Please enter some reviews to analyze.", None
|
282 |
+
|
283 |
+
reviews = process_reviews_input(reviews_text)
|
284 |
+
if not reviews:
|
285 |
+
return "No valid reviews found. Please check your input.", None
|
286 |
+
|
287 |
+
try:
|
288 |
+
result = analyzer.analyze_sentiment(reviews)
|
289 |
+
|
290 |
+
# Create visualization
|
291 |
+
fig = go.Figure(data=[
|
292 |
+
go.Bar(x=list(result['summary'].keys()),
|
293 |
+
y=list(result['summary'].values()),
|
294 |
+
marker_color=['green', 'red', 'gray'])
|
295 |
+
])
|
296 |
+
fig.update_layout(title="Sentiment Distribution", yaxis_title="Percentage")
|
297 |
+
|
298 |
+
return json.dumps(result, indent=2), fig
|
299 |
+
except Exception as e:
|
300 |
+
return f"Error: {str(e)}", None
|
301 |
+
|
302 |
+
def fake_detection_interface(reviews_text: str):
|
303 |
+
"""Interface for fake review detection"""
|
304 |
+
if not reviews_text.strip():
|
305 |
+
return "Please enter some reviews to analyze."
|
306 |
+
|
307 |
+
reviews = process_reviews_input(reviews_text)
|
308 |
+
if not reviews:
|
309 |
+
return "No valid reviews found. Please check your input."
|
310 |
+
|
311 |
+
try:
|
312 |
+
result = analyzer.detect_fake_reviews(reviews)
|
313 |
+
return json.dumps(result, indent=2)
|
314 |
+
except Exception as e:
|
315 |
+
return f"Error: {str(e)}"
|
316 |
+
|
317 |
+
def quality_assessment_interface(reviews_text: str):
|
318 |
+
"""Interface for quality assessment"""
|
319 |
+
if not reviews_text.strip():
|
320 |
+
return "Please enter some reviews to analyze."
|
321 |
+
|
322 |
+
reviews = process_reviews_input(reviews_text)
|
323 |
+
if not reviews:
|
324 |
+
return "No valid reviews found. Please check your input."
|
325 |
+
|
326 |
+
try:
|
327 |
+
result = analyzer.assess_quality(reviews)
|
328 |
+
return json.dumps(result, indent=2)
|
329 |
+
except Exception as e:
|
330 |
+
return f"Error: {str(e)}"
|
331 |
+
|
332 |
+
def competitor_comparison_interface(product_a_text: str, product_b_text: str):
|
333 |
+
"""Interface for competitor comparison"""
|
334 |
+
if not product_a_text.strip() or not product_b_text.strip():
|
335 |
+
return "Please enter reviews for both products.", None
|
336 |
+
|
337 |
+
reviews_a = process_reviews_input(product_a_text)
|
338 |
+
reviews_b = process_reviews_input(product_b_text)
|
339 |
+
|
340 |
+
if not reviews_a or not reviews_b:
|
341 |
+
return "Please provide valid reviews for both products.", None
|
342 |
+
|
343 |
+
try:
|
344 |
+
result, fig = analyzer.compare_competitors(reviews_a, reviews_b)
|
345 |
+
return json.dumps(result, indent=2), fig
|
346 |
+
except Exception as e:
|
347 |
+
return f"Error: {str(e)}", None
|
348 |
+
|
349 |
+
def generate_report_interface(analysis_result: str, report_type: str):
|
350 |
+
"""Interface for report generation"""
|
351 |
+
if not analysis_result.strip():
|
352 |
+
return "No analysis data available. Please run an analysis first."
|
353 |
+
|
354 |
+
try:
|
355 |
+
data = json.loads(analysis_result)
|
356 |
+
report = analyzer.generate_report(data, report_type.lower())
|
357 |
+
return report
|
358 |
+
except Exception as e:
|
359 |
+
return f"Error generating report: {str(e)}"
|
360 |
+
|
361 |
+
# Create Gradio interface
|
362 |
+
with gr.Blocks(title="SmartReview Pro", theme=gr.themes.Soft()) as demo:
|
363 |
+
gr.Markdown("# π SmartReview Pro")
|
364 |
+
gr.Markdown("Professional review analysis platform for e-commerce businesses")
|
365 |
+
|
366 |
+
with gr.Tab("π Sentiment Analysis"):
|
367 |
+
gr.Markdown("### Analyze customer sentiment from reviews")
|
368 |
+
with gr.Row():
|
369 |
+
with gr.Column():
|
370 |
+
sentiment_input = gr.Textbox(
|
371 |
+
lines=10,
|
372 |
+
placeholder="Enter reviews (one per line):\nGreat product, love it!\nTerrible quality, waste of money.\nOkay product, nothing special.",
|
373 |
+
label="Reviews"
|
374 |
+
)
|
375 |
+
sentiment_btn = gr.Button("Analyze Sentiment", variant="primary")
|
376 |
+
with gr.Column():
|
377 |
+
sentiment_output = gr.Textbox(label="Analysis Results", lines=15)
|
378 |
+
sentiment_chart = gr.Plot(label="Sentiment Distribution")
|
379 |
+
|
380 |
+
sentiment_btn.click(
|
381 |
+
sentiment_analysis_interface,
|
382 |
+
inputs=[sentiment_input],
|
383 |
+
outputs=[sentiment_output, sentiment_chart]
|
384 |
+
)
|
385 |
+
|
386 |
+
with gr.Tab("π Fake Review Detection"):
|
387 |
+
gr.Markdown("### Detect potentially fake or suspicious reviews")
|
388 |
+
with gr.Row():
|
389 |
+
with gr.Column():
|
390 |
+
fake_input = gr.Textbox(
|
391 |
+
lines=10,
|
392 |
+
placeholder="Enter reviews to check for authenticity...",
|
393 |
+
label="Reviews"
|
394 |
+
)
|
395 |
+
fake_btn = gr.Button("Detect Fake Reviews", variant="primary")
|
396 |
+
with gr.Column():
|
397 |
+
fake_output = gr.Textbox(label="Detection Results", lines=15)
|
398 |
+
|
399 |
+
fake_btn.click(
|
400 |
+
fake_detection_interface,
|
401 |
+
inputs=[fake_input],
|
402 |
+
outputs=[fake_output]
|
403 |
+
)
|
404 |
+
|
405 |
+
with gr.Tab("β Quality Assessment"):
|
406 |
+
gr.Markdown("### Assess the quality and helpfulness of reviews")
|
407 |
+
with gr.Row():
|
408 |
+
with gr.Column():
|
409 |
+
quality_input = gr.Textbox(
|
410 |
+
lines=10,
|
411 |
+
placeholder="Enter reviews to assess quality...",
|
412 |
+
label="Reviews"
|
413 |
+
)
|
414 |
+
quality_btn = gr.Button("Assess Quality", variant="primary")
|
415 |
+
with gr.Column():
|
416 |
+
quality_output = gr.Textbox(label="Quality Assessment", lines=15)
|
417 |
+
|
418 |
+
quality_btn.click(
|
419 |
+
quality_assessment_interface,
|
420 |
+
inputs=[quality_input],
|
421 |
+
outputs=[quality_output]
|
422 |
+
)
|
423 |
+
|
424 |
+
with gr.Tab("π Competitor Comparison"):
|
425 |
+
gr.Markdown("### Compare sentiment between competing products")
|
426 |
+
with gr.Row():
|
427 |
+
with gr.Column():
|
428 |
+
comp_product_a = gr.Textbox(
|
429 |
+
lines=8,
|
430 |
+
placeholder="Product A reviews...",
|
431 |
+
label="Product A Reviews"
|
432 |
+
)
|
433 |
+
comp_product_b = gr.Textbox(
|
434 |
+
lines=8,
|
435 |
+
placeholder="Product B reviews...",
|
436 |
+
label="Product B Reviews"
|
437 |
+
)
|
438 |
+
comp_btn = gr.Button("Compare Products", variant="primary")
|
439 |
+
with gr.Column():
|
440 |
+
comp_output = gr.Textbox(label="Comparison Results", lines=15)
|
441 |
+
comp_chart = gr.Plot(label="Comparison Chart")
|
442 |
+
|
443 |
+
comp_btn.click(
|
444 |
+
competitor_comparison_interface,
|
445 |
+
inputs=[comp_product_a, comp_product_b],
|
446 |
+
outputs=[comp_output, comp_chart]
|
447 |
+
)
|
448 |
+
|
449 |
+
with gr.Tab("π Report Generation"):
|
450 |
+
gr.Markdown("### Generate professional analysis reports")
|
451 |
+
with gr.Row():
|
452 |
+
with gr.Column():
|
453 |
+
report_data = gr.Textbox(
|
454 |
+
lines=10,
|
455 |
+
placeholder="Paste analysis results here...",
|
456 |
+
label="Analysis Data (JSON)"
|
457 |
+
)
|
458 |
+
report_type = gr.Dropdown(
|
459 |
+
choices=["sentiment", "fake", "quality"],
|
460 |
+
value="sentiment",
|
461 |
+
label="Report Type"
|
462 |
+
)
|
463 |
+
report_btn = gr.Button("Generate Report", variant="primary")
|
464 |
+
with gr.Column():
|
465 |
+
report_output = gr.Textbox(label="Generated Report", lines=15)
|
466 |
+
|
467 |
+
report_btn.click(
|
468 |
+
generate_report_interface,
|
469 |
+
inputs=[report_data, report_type],
|
470 |
+
outputs=[report_output]
|
471 |
+
)
|
472 |
+
|
473 |
+
with gr.Tab("βΉοΈ About"):
|
474 |
+
gr.Markdown("""
|
475 |
+
## SmartReview Pro Features
|
476 |
+
|
477 |
+
- **Sentiment Analysis**: Analyze customer emotions and opinions
|
478 |
+
- **Fake Review Detection**: Identify suspicious or inauthentic reviews
|
479 |
+
- **Quality Assessment**: Evaluate review helpfulness and detail
|
480 |
+
- **Competitor Comparison**: Compare sentiment across products
|
481 |
+
- **Professional Reports**: Generate detailed analysis reports
|
482 |
+
|
483 |
+
## Pricing Plans
|
484 |
+
- **Free**: 10 analyses per day
|
485 |
+
- **Pro ($299/month)**: 1000 analyses per day + advanced features
|
486 |
+
- **Enterprise**: Unlimited usage + API access + custom reports
|
487 |
+
|
488 |
+
Contact us for enterprise solutions and custom integrations.
|
489 |
+
""")
|
490 |
+
|
491 |
+
if __name__ == "__main__":
|
492 |
+
demo.launch()
|