import gradio as gr import pandas as pd import numpy as np import json import re import io from datetime import datetime from typing import List, Dict, Tuple from transformers import pipeline, AutoTokenizer import plotly.graph_objects as go from plotly.subplots import make_subplots import sqlite3 import hashlib import time # Initialize models sentiment_analyzer = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest") # Use a simpler ABSA approach with keyword extraction instead of the problematic model absa_analyzer = None class ReviewAnalyzer: def __init__(self): self.db_path = "reviews.db" self._init_db() def _init_db(self): conn = sqlite3.connect(self.db_path) conn.execute(''' CREATE TABLE IF NOT EXISTS usage_log ( id INTEGER PRIMARY KEY, user_id TEXT, timestamp DATETIME, analysis_type TEXT, items_count INTEGER ) ''') conn.close() def preprocess_text(self, text: str) -> str: """Clean and preprocess review text""" text = re.sub(r'http\S+', '', text) text = re.sub(r'[^\w\s]', '', text) text = text.strip().lower() return text def extract_aspect_keywords(self, reviews: List[str]) -> Dict: """Extract aspect-based sentiment keywords using rule-based approach""" positive_aspects = {} negative_aspects = {} detailed_aspects = [] # Define aspect keywords aspect_keywords = { 'quality': ['quality', 'build', 'material', 'durable', 'cheap', 'flimsy'], 'price': ['price', 'cost', 'expensive', 'cheap', 'value', 'money', 'affordable'], 'delivery': ['delivery', 'shipping', 'fast', 'slow', 'quick', 'late'], 'service': ['service', 'support', 'staff', 'helpful', 'rude', 'friendly'], 'design': ['design', 'look', 'beautiful', 'ugly', 'style', 'appearance'], 'usability': ['easy', 'difficult', 'simple', 'complex', 'user-friendly'], 'performance': ['performance', 'speed', 'fast', 'slow', 'efficient'] } for review in reviews: if not review.strip() or len(review) < 10: continue # Get sentiment for the review try: sentiment_result = sentiment_analyzer(review)[0] review_sentiment = 'positive' if 'pos' in sentiment_result['label'].lower() else 'negative' confidence = float(sentiment_result['score']) except: continue review_lower = review.lower() # Check for aspect mentions for aspect, keywords in aspect_keywords.items(): for keyword in keywords: if keyword in review_lower: # Determine if this specific aspect mention is positive or negative aspect_sentiment = review_sentiment # Add to aspect counts if aspect_sentiment == 'positive': if aspect not in positive_aspects: positive_aspects[aspect] = 0 positive_aspects[aspect] += 1 else: if aspect not in negative_aspects: negative_aspects[aspect] = 0 negative_aspects[aspect] += 1 detailed_aspects.append({ 'review': review[:50] + '...', 'aspect': aspect, 'sentiment': aspect_sentiment, 'confidence': round(confidence, 3) }) break # Only count each aspect once per review # Get top aspects top_positive = sorted(positive_aspects.items(), key=lambda x: x[1], reverse=True)[:10] top_negative = sorted(negative_aspects.items(), key=lambda x: x[1], reverse=True)[:10] return { 'top_positive_aspects': top_positive, 'top_negative_aspects': top_negative, 'detailed_aspects': detailed_aspects, 'summary': { 'total_positive_aspects': len(positive_aspects), 'total_negative_aspects': len(negative_aspects) } } def analyze_sentiment(self, reviews: List[str]) -> Dict: """Analyze sentiment of reviews with keyword extraction""" results = [] sentiments = {'positive': 0, 'negative': 0, 'neutral': 0} for review in reviews: if not review.strip(): continue clean_review = self.preprocess_text(review) result = sentiment_analyzer(clean_review)[0] label = result['label'].lower() score = float(result['score']) if 'pos' in label: sentiment = 'positive' elif 'neg' in label: sentiment = 'negative' else: sentiment = 'neutral' sentiments[sentiment] += 1 results.append({ 'text': review[:100] + '...' if len(review) > 100 else review, 'sentiment': sentiment, 'confidence': round(score, 3) }) total = len(results) sentiment_percentages = {k: round(v/total*100, 1) for k, v in sentiments.items()} # Extract keywords keywords = self.extract_aspect_keywords(reviews) return { 'summary': sentiment_percentages, 'details': results, 'total_reviews': total, 'keywords': keywords } def detect_fake_reviews(self, reviews: List[str], metadata: Dict = None) -> Dict: """Detect potentially fake reviews with optional metadata""" fake_scores = [] # Process metadata if provided metadata_flags = [] if metadata and 'timestamps' in metadata and 'usernames' in metadata: metadata_flags = self._analyze_metadata(metadata['timestamps'], metadata['usernames']) for i, review in enumerate(reviews): if not review.strip(): continue score = 0 flags = [] # Text-based checks if len(review) < 20: score += 0.3 flags.append("too_short") words = review.lower().split() unique_ratio = len(set(words)) / len(words) if words else 0 if unique_ratio < 0.5: score += 0.4 flags.append("repetitive") punct_ratio = len(re.findall(r'[!?.]', review)) / len(review) if review else 0 if punct_ratio > 0.1: score += 0.2 flags.append("excessive_punctuation") generic_phrases = ['amazing', 'perfect', 'best ever', 'highly recommend'] if any(phrase in review.lower() for phrase in generic_phrases): score += 0.1 flags.append("generic_language") # Add metadata flags if available if i < len(metadata_flags): if metadata_flags[i]: score += 0.3 flags.extend(metadata_flags[i]) fake_scores.append({ 'text': review[:100] + '...' if len(review) > 100 else review, 'fake_probability': min(round(score, 3), 1.0), 'status': 'suspicious' if score > 0.5 else 'authentic', 'flags': flags }) suspicious_count = sum(1 for item in fake_scores if item['fake_probability'] > 0.5) return { 'summary': { 'total_reviews': len(fake_scores), 'suspicious_reviews': suspicious_count, 'authenticity_rate': round((len(fake_scores) - suspicious_count) / len(fake_scores) * 100, 1) if fake_scores else 0 }, 'details': fake_scores, 'metadata_analysis': metadata_flags if metadata_flags else None } def _analyze_metadata(self, timestamps: List[str], usernames: List[str]) -> List[List[str]]: """Analyze metadata for suspicious patterns""" flags_per_review = [[] for _ in range(len(timestamps))] # Time density analysis if len(timestamps) >= 5: times = [] for i, ts in enumerate(timestamps): try: dt = datetime.strptime(ts, "%Y-%m-%d %H:%M:%S") times.append((i, dt)) except: continue times.sort(key=lambda x: x[1]) # Check for clusters for i in range(len(times) - 5): if (times[i + 5][1] - times[i][1]).total_seconds() < 300: # 5 mins for j in range(i, i + 6): flags_per_review[times[j][0]].append("time_cluster") # Username pattern analysis for i, username in enumerate(usernames): if re.match(r"user_\d{4,}", username): flags_per_review[i].append("suspicious_username") if len(username) < 4: flags_per_review[i].append("short_username") return flags_per_review def assess_quality(self, reviews: List[str], custom_weights: Dict = None) -> Tuple[Dict, go.Figure]: """Assess review quality with customizable weights and radar chart""" default_weights = { 'length': 0.25, 'detail': 0.25, 'structure': 0.25, 'helpfulness': 0.25 } weights = custom_weights if custom_weights else default_weights quality_scores = [] for review in reviews: if not review.strip(): continue factors = {} # Length factor length_score = min(len(review) / 200, 1.0) factors['length'] = round(length_score, 2) # Detail factor detail_words = ['because', 'however', 'although', 'specifically', 'particularly'] detail_score = min(sum(1 for word in detail_words if word in review.lower()) / 3, 1.0) factors['detail'] = round(detail_score, 2) # Structure factor sentences = len(re.split(r'[.!?]', review)) structure_score = min(sentences / 5, 1.0) factors['structure'] = round(structure_score, 2) # Helpfulness factor helpful_words = ['pros', 'cons', 'recommend', 'suggest', 'tip', 'advice'] helpful_score = min(sum(1 for word in helpful_words if word in review.lower()) / 2, 1.0) factors['helpfulness'] = round(helpful_score, 2) # Calculate weighted score total_score = sum(factors[k] * weights[k] for k in factors.keys()) quality_scores.append({ 'text': review[:100] + '...' if len(review) > 100 else review, 'quality_score': round(total_score, 3), 'factors': factors, 'grade': 'A' if total_score > 0.8 else 'B' if total_score > 0.6 else 'C' if total_score > 0.4 else 'D' }) avg_quality = sum(item['quality_score'] for item in quality_scores) / len(quality_scores) if quality_scores else 0 # Create radar chart for average factors avg_factors = {} for factor in ['length', 'detail', 'structure', 'helpfulness']: avg_factors[factor] = float(sum(item['factors'][factor] for item in quality_scores) / len(quality_scores) if quality_scores else 0) fig = go.Figure() fig.add_trace(go.Scatterpolar( r=list(avg_factors.values()), theta=list(avg_factors.keys()), fill='toself', name='Quality Factors' )) fig.update_layout( polar=dict( radialaxis=dict( visible=True, range=[0, 1] )), showlegend=True, title="Average Quality Factors" ) return { 'summary': { 'average_quality': round(avg_quality, 3), 'total_reviews': len(quality_scores), 'high_quality_count': sum(1 for item in quality_scores if item['quality_score'] > 0.7), 'weights_used': weights }, 'details': quality_scores, 'factor_averages': avg_factors }, fig def compare_competitors(self, product_a_reviews: List[str], product_b_reviews: List[str]) -> Tuple[Dict, go.Figure]: """Compare sentiment between two products""" analysis_a = self.analyze_sentiment(product_a_reviews) analysis_b = self.analyze_sentiment(product_b_reviews) fig = make_subplots( rows=1, cols=2, specs=[[{'type': 'pie'}, {'type': 'pie'}]], subplot_titles=['Product A', 'Product B'] ) fig.add_trace(go.Pie( labels=list(analysis_a['summary'].keys()), values=list(analysis_a['summary'].values()), name="Product A" ), row=1, col=1) fig.add_trace(go.Pie( labels=list(analysis_b['summary'].keys()), values=list(analysis_b['summary'].values()), name="Product B" ), row=1, col=2) fig.update_layout(title_text="Sentiment Comparison") comparison = { 'product_a': analysis_a, 'product_b': analysis_b, 'winner': 'Product A' if analysis_a['summary']['positive'] > analysis_b['summary']['positive'] else 'Product B' } return comparison, fig def generate_report(self, analysis_data: Dict, report_type: str = "basic") -> str: """Generate analysis report with export capability""" timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") if report_type == "sentiment": keywords = analysis_data.get('keywords', {}) top_pos = keywords.get('top_positive_aspects', [])[:5] top_neg = keywords.get('top_negative_aspects', [])[:5] return f"""# Sentiment Analysis Report Generated: {timestamp} ## Summary - Total Reviews: {analysis_data.get('total_reviews', 0)} - Positive: {analysis_data.get('summary', {}).get('positive', 0)}% - Negative: {analysis_data.get('summary', {}).get('negative', 0)}% - Neutral: {analysis_data.get('summary', {}).get('neutral', 0)}% ## Top Positive Aspects {chr(10).join([f"- {aspect[0]} (mentioned {aspect[1]} times)" for aspect in top_pos])} ## Top Negative Aspects {chr(10).join([f"- {aspect[0]} (mentioned {aspect[1]} times)" for aspect in top_neg])} ## Key Insights - Overall sentiment: {'Positive' if analysis_data.get('summary', {}).get('positive', 0) > 50 else 'Mixed'} - Main complaints: {', '.join([aspect[0] for aspect in top_neg[:3]])} - Key strengths: {', '.join([aspect[0] for aspect in top_pos[:3]])} ## Recommendations - Address negative aspects: {', '.join([aspect[0] for aspect in top_neg[:2]])} - Leverage positive aspects in marketing - Monitor sentiment trends over time """ elif report_type == "fake": return f"""# Fake Review Detection Report Generated: {timestamp} ## Summary - Total Reviews: {analysis_data.get('summary', {}).get('total_reviews', 0)} - Suspicious Reviews: {analysis_data.get('summary', {}).get('suspicious_reviews', 0)} - Authenticity Rate: {analysis_data.get('summary', {}).get('authenticity_rate', 0)}% ## Risk Assessment - Overall Risk: {'High' if analysis_data.get('summary', {}).get('authenticity_rate', 0) < 70 else 'Low'} - Action Required: {'Yes' if analysis_data.get('summary', {}).get('suspicious_reviews', 0) > 0 else 'No'} ## Common Fraud Indicators - Short reviews with generic language - Repetitive content patterns - Suspicious timing clusters - Unusual username patterns """ return "Report generated successfully" # Global analyzer instance analyzer = ReviewAnalyzer() def process_reviews_input(text: str) -> List[str]: """Process review input text into list""" if not text.strip(): return [] reviews = [] for line in text.split('\n'): line = line.strip() if line and len(line) > 10: reviews.append(line) return reviews def process_csv_upload(file) -> Tuple[List[str], Dict]: """Process uploaded CSV file""" if file is None: return [], {} try: df = pd.read_csv(file.name) # Look for common column names review_col = None time_col = None user_col = None for col in df.columns: col_lower = col.lower() if 'review' in col_lower or 'comment' in col_lower or 'text' in col_lower: review_col = col elif 'time' in col_lower or 'date' in col_lower: time_col = col elif 'user' in col_lower or 'name' in col_lower: user_col = col if review_col is None: return [], {"error": "No review column found. Expected columns: 'review', 'comment', or 'text'"} reviews = df[review_col].dropna().astype(str).tolist() metadata = {} if time_col: metadata['timestamps'] = df[time_col].dropna().astype(str).tolist() if user_col: metadata['usernames'] = df[user_col].dropna().astype(str).tolist() return reviews, metadata except Exception as e: return [], {"error": f"Failed to process CSV: {str(e)}"} def sentiment_analysis_interface(reviews_text: str, csv_file): """Interface for sentiment analysis""" reviews = [] if csv_file is not None: reviews, metadata = process_csv_upload(csv_file) if 'error' in metadata: return metadata['error'], None else: reviews = process_reviews_input(reviews_text) if not reviews: return "Please enter reviews or upload a CSV file.", None try: result = analyzer.analyze_sentiment(reviews) fig = go.Figure(data=[ go.Bar(x=list(result['summary'].keys()), y=list(result['summary'].values()), marker_color=['green', 'red', 'gray']) ]) fig.update_layout(title="Sentiment Distribution", yaxis_title="Percentage") return json.dumps(result, indent=2), fig except Exception as e: return f"Error: {str(e)}", None def fake_detection_interface(reviews_text: str, csv_file): """Interface for fake review detection""" reviews = [] metadata = {} if csv_file is not None: reviews, metadata = process_csv_upload(csv_file) if 'error' in metadata: return metadata['error'] else: reviews = process_reviews_input(reviews_text) if not reviews: return "Please enter reviews or upload a CSV file." try: result = analyzer.detect_fake_reviews(reviews, metadata if metadata else None) return json.dumps(result, indent=2) except Exception as e: return f"Error: {str(e)}" def quality_assessment_interface(reviews_text: str, csv_file, length_weight: float, detail_weight: float, structure_weight: float, help_weight: float): """Interface for quality assessment with custom weights""" reviews = [] if csv_file is not None: reviews, metadata = process_csv_upload(csv_file) if 'error' in metadata: return metadata['error'], None else: reviews = process_reviews_input(reviews_text) if not reviews: return "Please enter reviews or upload a CSV file.", None try: custom_weights = { 'length': length_weight, 'detail': detail_weight, 'structure': structure_weight, 'helpfulness': help_weight } result, radar_fig = analyzer.assess_quality(reviews, custom_weights) return json.dumps(result, indent=2), radar_fig except Exception as e: return f"Error: {str(e)}", None def competitor_comparison_interface(product_a_text: str, product_b_text: str): """Interface for competitor comparison""" if not product_a_text.strip() or not product_b_text.strip(): return "Please enter reviews for both products.", None reviews_a = process_reviews_input(product_a_text) reviews_b = process_reviews_input(product_b_text) if not reviews_a or not reviews_b: return "Please provide valid reviews for both products.", None try: result, fig = analyzer.compare_competitors(reviews_a, reviews_b) return json.dumps(result, indent=2), fig except Exception as e: return f"Error: {str(e)}", None def generate_report_interface(analysis_result: str, report_type: str): """Interface for report generation""" if not analysis_result.strip(): return "No analysis data available. Please run an analysis first." try: data = json.loads(analysis_result) report = analyzer.generate_report(data, report_type.lower()) return report except Exception as e: return f"Error generating report: {str(e)}" # Create Gradio interface with gr.Blocks(title="SmartReview Pro", theme=gr.themes.Soft()) as demo: gr.Markdown("# 🛒 SmartReview Pro") gr.Markdown("Advanced review analysis platform with AI-powered insights") with gr.Tab("📊 Sentiment Analysis"): gr.Markdown("### Analyze customer sentiment and extract key aspects") with gr.Row(): with gr.Column(): sentiment_input = gr.Textbox( lines=8, placeholder="Enter reviews (one per line) or upload CSV...", label="Reviews" ) sentiment_csv = gr.File( label="Upload CSV (columns: review/comment/text, optional: timestamp, username)", file_types=[".csv"] ) sentiment_btn = gr.Button("Analyze Sentiment", variant="primary") with gr.Column(): sentiment_output = gr.Textbox(label="Analysis Results", lines=15) sentiment_chart = gr.Plot(label="Sentiment Distribution") sentiment_btn.click( sentiment_analysis_interface, inputs=[sentiment_input, sentiment_csv], outputs=[sentiment_output, sentiment_chart] ) with gr.Tab("🔍 Fake Review Detection"): gr.Markdown("### Detect suspicious reviews using text analysis and metadata") with gr.Row(): with gr.Column(): fake_input = gr.Textbox( lines=8, placeholder="Enter reviews to analyze...", label="Reviews" ) fake_csv = gr.File( label="Upload CSV (supports timestamp & username analysis)", file_types=[".csv"] ) fake_btn = gr.Button("Detect Fake Reviews", variant="primary") with gr.Column(): fake_output = gr.Textbox(label="Detection Results", lines=15) fake_btn.click( fake_detection_interface, inputs=[fake_input, fake_csv], outputs=[fake_output] ) with gr.Tab("⭐ Quality Assessment"): gr.Markdown("### Assess review quality with customizable weights") with gr.Row(): with gr.Column(): quality_input = gr.Textbox( lines=8, placeholder="Enter reviews to assess...", label="Reviews" ) quality_csv = gr.File( label="Upload CSV", file_types=[".csv"] ) gr.Markdown("**Customize Quality Weights:**") with gr.Row(): length_weight = gr.Slider(0, 1, 0.25, label="Length Weight") detail_weight = gr.Slider(0, 1, 0.25, label="Detail Weight") with gr.Row(): structure_weight = gr.Slider(0, 1, 0.25, label="Structure Weight") help_weight = gr.Slider(0, 1, 0.25, label="Helpfulness Weight") quality_btn = gr.Button("Assess Quality", variant="primary") with gr.Column(): quality_output = gr.Textbox(label="Quality Assessment", lines=12) quality_radar = gr.Plot(label="Quality Factors Radar Chart") quality_btn.click( quality_assessment_interface, inputs=[quality_input, quality_csv, length_weight, detail_weight, structure_weight, help_weight], outputs=[quality_output, quality_radar] ) with gr.Tab("🆚 Competitor Comparison"): gr.Markdown("### Compare sentiment between competing products") with gr.Row(): with gr.Column(): comp_product_a = gr.Textbox( lines=8, placeholder="Product A reviews...", label="Product A Reviews" ) comp_product_b = gr.Textbox( lines=8, placeholder="Product B reviews...", label="Product B Reviews" ) comp_btn = gr.Button("Compare Products", variant="primary") with gr.Column(): comp_output = gr.Textbox(label="Comparison Results", lines=15) comp_chart = gr.Plot(label="Comparison Chart") comp_btn.click( competitor_comparison_interface, inputs=[comp_product_a, comp_product_b], outputs=[comp_output, comp_chart] ) with gr.Tab("📋 Report Generation"): gr.Markdown("### Generate professional analysis reports") with gr.Row(): with gr.Column(): report_data = gr.Textbox( lines=10, placeholder="Paste analysis results here...", label="Analysis Data (JSON)" ) report_type = gr.Dropdown( choices=["sentiment", "fake", "quality"], value="sentiment", label="Report Type" ) report_btn = gr.Button("Generate Report", variant="primary") with gr.Column(): report_output = gr.Textbox(label="Generated Report", lines=15) report_btn.click( generate_report_interface, inputs=[report_data, report_type], outputs=[report_output] ) if __name__ == "__main__": demo.launch()