Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
import plotly.graph_objects as go
|
5 |
import plotly.express as px
|
6 |
from plotly.subplots import make_subplots
|
@@ -18,16 +18,8 @@ from functools import lru_cache, wraps
|
|
18 |
from dataclasses import dataclass
|
19 |
from typing import List, Dict, Optional, Tuple, Any, Callable
|
20 |
from contextlib import contextmanager
|
21 |
-
import nltk
|
22 |
-
from nltk.corpus import stopwords
|
23 |
-
import langdetect
|
24 |
-
import pandas as pd
|
25 |
import gc
|
26 |
-
|
27 |
-
# Advanced analysis imports
|
28 |
-
import shap
|
29 |
-
import lime
|
30 |
-
from lime.lime_text import LimeTextExplainer
|
31 |
|
32 |
# Configuration
|
33 |
@dataclass
|
@@ -39,45 +31,52 @@ class Config:
|
|
39 |
CACHE_SIZE: int = 128
|
40 |
BATCH_PROCESSING_SIZE: int = 8
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
'
|
49 |
-
'
|
50 |
-
'
|
|
|
51 |
}
|
52 |
|
|
|
53 |
MODELS = {
|
54 |
-
'
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
}
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
'
|
62 |
-
'
|
63 |
-
'
|
64 |
-
'rainbow': {'pos': '#9C27B0', 'neg': '#E91E63', 'neu': '#FF5722'}
|
65 |
}
|
66 |
|
67 |
config = Config()
|
68 |
-
|
69 |
-
# Logging setup
|
70 |
-
logging.basicConfig(level=logging.INFO)
|
71 |
logger = logging.getLogger(__name__)
|
72 |
|
73 |
-
# Initialize NLTK
|
74 |
-
try:
|
75 |
-
nltk.download('stopwords', quiet=True)
|
76 |
-
nltk.download('punkt', quiet=True)
|
77 |
-
STOP_WORDS = set(stopwords.words('english'))
|
78 |
-
except:
|
79 |
-
STOP_WORDS = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}
|
80 |
-
|
81 |
# Decorators and Context Managers
|
82 |
def handle_errors(default_return=None):
|
83 |
"""Centralized error handling decorator"""
|
@@ -92,166 +91,113 @@ def handle_errors(default_return=None):
|
|
92 |
return wrapper
|
93 |
return decorator
|
94 |
|
95 |
-
@contextmanager
|
96 |
-
def memory_cleanup():
|
97 |
-
"""Context manager for memory cleanup"""
|
98 |
-
try:
|
99 |
-
yield
|
100 |
-
finally:
|
101 |
-
gc.collect()
|
102 |
-
|
103 |
class ThemeContext:
|
104 |
"""Theme management context"""
|
105 |
def __init__(self, theme: str = 'default'):
|
106 |
self.theme = theme
|
107 |
self.colors = config.THEMES.get(theme, config.THEMES['default'])
|
108 |
|
109 |
-
# Enhanced Model Manager
|
110 |
class ModelManager:
|
111 |
"""Multi-language model manager with lazy loading"""
|
112 |
_instance = None
|
|
|
|
|
|
|
|
|
113 |
|
114 |
def __new__(cls):
|
115 |
if cls._instance is None:
|
116 |
cls._instance = super().__new__(cls)
|
117 |
-
cls._instance._initialized = False
|
118 |
return cls._instance
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
self.
|
124 |
-
|
125 |
-
self._load_default_models()
|
126 |
-
self._initialized = True
|
127 |
-
|
128 |
-
def _load_default_models(self):
|
129 |
-
"""Load default models"""
|
130 |
-
try:
|
131 |
-
# Load multilingual model as default
|
132 |
-
model_name = config.MODELS['multilingual']
|
133 |
-
self.tokenizers['default'] = AutoTokenizer.from_pretrained(model_name)
|
134 |
-
self.models['default'] = AutoModelForSequenceClassification.from_pretrained(model_name)
|
135 |
-
self.models['default'].to(self.device)
|
136 |
-
logger.info(f"Default model loaded: {model_name}")
|
137 |
-
|
138 |
-
# Load Chinese model
|
139 |
-
zh_model_name = config.MODELS['zh']
|
140 |
-
self.tokenizers['zh'] = AutoTokenizer.from_pretrained(zh_model_name)
|
141 |
-
self.models['zh'] = AutoModelForSequenceClassification.from_pretrained(zh_model_name)
|
142 |
-
self.models['zh'].to(self.device)
|
143 |
-
logger.info(f"Chinese model loaded: {zh_model_name}")
|
144 |
-
|
145 |
-
except Exception as e:
|
146 |
-
logger.error(f"Failed to load models: {e}")
|
147 |
-
raise
|
148 |
|
149 |
-
def
|
150 |
-
"""Get
|
151 |
-
if
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
@staticmethod
|
156 |
def detect_language(text: str) -> str:
|
157 |
-
"""Detect
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
168 |
|
169 |
-
# Simplified
|
170 |
class TextProcessor:
|
171 |
"""Optimized text processing with multi-language support"""
|
172 |
-
|
173 |
@staticmethod
|
174 |
@lru_cache(maxsize=config.CACHE_SIZE)
|
175 |
-
def clean_text(text: str,
|
176 |
-
"""
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
if re.search(r'[\u4e00-\u9fff]', text):
|
181 |
-
return text
|
182 |
-
|
183 |
-
text = text.lower()
|
184 |
-
|
185 |
-
if remove_numbers:
|
186 |
-
text = re.sub(r'\d+', '', text)
|
187 |
-
|
188 |
-
if remove_punctuation:
|
189 |
-
text = re.sub(r'[^\w\s]', '', text)
|
190 |
-
|
191 |
-
words = text.split()
|
192 |
-
cleaned_words = [w for w in words if w not in STOP_WORDS and len(w) >= config.MIN_WORD_LENGTH]
|
193 |
-
return ' '.join(cleaned_words)
|
194 |
-
|
195 |
-
@staticmethod
|
196 |
-
def extract_keywords(text: str, top_k: int = 5) -> List[str]:
|
197 |
-
"""Extract keywords with language support"""
|
198 |
-
if re.search(r'[\u4e00-\u9fff]', text):
|
199 |
-
# Chinese text processing
|
200 |
-
words = re.findall(r'[\u4e00-\u9fff]+', text)
|
201 |
-
all_chars = ''.join(words)
|
202 |
-
char_freq = Counter(all_chars)
|
203 |
-
return [char for char, _ in char_freq.most_common(top_k)]
|
204 |
-
else:
|
205 |
-
# Other languages
|
206 |
-
cleaned = TextProcessor.clean_text(text)
|
207 |
-
words = cleaned.split()
|
208 |
-
word_freq = Counter(words)
|
209 |
-
return [word for word, _ in word_freq.most_common(top_k)]
|
210 |
-
|
211 |
-
@staticmethod
|
212 |
-
def parse_batch_input(text: str) -> List[str]:
|
213 |
-
"""Parse batch input from textarea"""
|
214 |
-
lines = text.strip().split('\n')
|
215 |
-
return [line.strip() for line in lines if line.strip()]
|
216 |
|
217 |
-
# Enhanced History Manager
|
218 |
class HistoryManager:
|
219 |
-
"""
|
220 |
def __init__(self):
|
221 |
self._history = []
|
222 |
|
223 |
def add(self, entry: Dict):
|
224 |
-
|
225 |
-
entry['timestamp'] = datetime.now().isoformat()
|
226 |
-
self._history.append(entry)
|
227 |
if len(self._history) > config.MAX_HISTORY_SIZE:
|
228 |
self._history = self._history[-config.MAX_HISTORY_SIZE:]
|
229 |
|
230 |
-
def add_batch(self, entries: List[Dict]):
|
231 |
-
"""Add multiple entries"""
|
232 |
-
for entry in entries:
|
233 |
-
self.add(entry)
|
234 |
-
|
235 |
def get_all(self) -> List[Dict]:
|
236 |
return self._history.copy()
|
237 |
|
238 |
-
def get_recent(self, n: int = 10) -> List[Dict]:
|
239 |
-
return self._history[-n:] if self._history else []
|
240 |
-
|
241 |
-
def filter_by(self, sentiment: str = None, language: str = None,
|
242 |
-
min_confidence: float = None) -> List[Dict]:
|
243 |
-
"""Filter history by criteria"""
|
244 |
-
filtered = self._history
|
245 |
-
|
246 |
-
if sentiment:
|
247 |
-
filtered = [h for h in filtered if h['sentiment'] == sentiment]
|
248 |
-
if language:
|
249 |
-
filtered = [h for h in filtered if h.get('language', 'en') == language]
|
250 |
-
if min_confidence:
|
251 |
-
filtered = [h for h in filtered if h['confidence'] >= min_confidence]
|
252 |
-
|
253 |
-
return filtered
|
254 |
-
|
255 |
def clear(self) -> int:
|
256 |
count = len(self._history)
|
257 |
self._history.clear()
|
@@ -259,404 +205,207 @@ class HistoryManager:
|
|
259 |
|
260 |
def size(self) -> int:
|
261 |
return len(self._history)
|
262 |
-
|
263 |
-
def get_stats(self) -> Dict:
|
264 |
-
"""Get comprehensive statistics"""
|
265 |
-
if not self._history:
|
266 |
-
return {}
|
267 |
-
|
268 |
-
sentiments = [item['sentiment'] for item in self._history]
|
269 |
-
confidences = [item['confidence'] for item in self._history]
|
270 |
-
languages = [item.get('language', 'en') for item in self._history]
|
271 |
-
|
272 |
-
return {
|
273 |
-
'total_analyses': len(self._history),
|
274 |
-
'positive_count': sentiments.count('Positive'),
|
275 |
-
'negative_count': sentiments.count('Negative'),
|
276 |
-
'neutral_count': sentiments.count('Neutral'),
|
277 |
-
'avg_confidence': np.mean(confidences),
|
278 |
-
'max_confidence': np.max(confidences),
|
279 |
-
'min_confidence': np.min(confidences),
|
280 |
-
'languages_detected': len(set(languages)),
|
281 |
-
'most_common_language': Counter(languages).most_common(1)[0][0] if languages else 'en'
|
282 |
-
}
|
283 |
|
284 |
-
# Core
|
285 |
class SentimentEngine:
|
286 |
-
"""Multi-language sentiment analysis
|
287 |
-
|
288 |
def __init__(self):
|
289 |
self.model_manager = ModelManager()
|
|
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
"""Analyze single text with basic features"""
|
294 |
-
if not text.strip():
|
295 |
-
raise ValueError("Empty text provided")
|
296 |
-
|
297 |
-
# Detect language
|
298 |
-
if language == 'auto':
|
299 |
-
detected_lang = self.model_manager.detect_language(text)
|
300 |
-
else:
|
301 |
-
detected_lang = language
|
302 |
-
|
303 |
-
# Get appropriate model
|
304 |
-
model, tokenizer = self.model_manager.get_model(detected_lang)
|
305 |
-
|
306 |
-
# Preprocessing
|
307 |
-
options = preprocessing_options or {}
|
308 |
-
processed_text = text
|
309 |
-
if options.get('clean_text', False) and not re.search(r'[\u4e00-\u9fff]', text):
|
310 |
-
processed_text = TextProcessor.clean_text(
|
311 |
-
text,
|
312 |
-
options.get('remove_punctuation', True),
|
313 |
-
options.get('remove_numbers', False)
|
314 |
-
)
|
315 |
-
|
316 |
-
# Tokenize and analyze
|
317 |
-
inputs = tokenizer(processed_text, return_tensors="pt", padding=True,
|
318 |
-
truncation=True, max_length=config.MAX_TEXT_LENGTH).to(self.model_manager.device)
|
319 |
-
|
320 |
-
with torch.no_grad():
|
321 |
-
outputs = model(**inputs)
|
322 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
|
323 |
-
|
324 |
-
# Handle different model outputs
|
325 |
-
if len(probs) == 3: # negative, neutral, positive
|
326 |
-
sentiment_idx = np.argmax(probs)
|
327 |
-
sentiment_labels = ['Negative', 'Neutral', 'Positive']
|
328 |
-
sentiment = sentiment_labels[sentiment_idx]
|
329 |
-
confidence = float(probs[sentiment_idx])
|
330 |
-
|
331 |
-
result = {
|
332 |
-
'sentiment': sentiment,
|
333 |
-
'confidence': confidence,
|
334 |
-
'neg_prob': float(probs[0]),
|
335 |
-
'neu_prob': float(probs[1]),
|
336 |
-
'pos_prob': float(probs[2]),
|
337 |
-
'has_neutral': True
|
338 |
-
}
|
339 |
-
else: # negative, positive
|
340 |
-
pred = np.argmax(probs)
|
341 |
-
sentiment = "Positive" if pred == 1 else "Negative"
|
342 |
-
confidence = float(probs[pred])
|
343 |
-
|
344 |
-
result = {
|
345 |
-
'sentiment': sentiment,
|
346 |
-
'confidence': confidence,
|
347 |
-
'neg_prob': float(probs[0]),
|
348 |
-
'pos_prob': float(probs[1]),
|
349 |
-
'neu_prob': 0.0,
|
350 |
-
'has_neutral': False
|
351 |
-
}
|
352 |
-
|
353 |
-
# Extract basic keywords
|
354 |
-
keywords = TextProcessor.extract_keywords(text, 10)
|
355 |
-
keyword_tuples = [(word, 0.1) for word in keywords] # Simple keyword extraction
|
356 |
-
|
357 |
-
# Add metadata
|
358 |
-
result.update({
|
359 |
-
'language': detected_lang,
|
360 |
-
'keywords': keyword_tuples,
|
361 |
-
'word_count': len(text.split()),
|
362 |
-
'char_count': len(text)
|
363 |
-
})
|
364 |
-
|
365 |
-
return result
|
366 |
-
|
367 |
-
@handle_errors(default_return=[])
|
368 |
-
def analyze_batch(self, texts: List[str], language: str = 'auto',
|
369 |
-
preprocessing_options: Dict = None, progress_callback=None) -> List[Dict]:
|
370 |
-
"""Optimized batch processing"""
|
371 |
-
if len(texts) > config.BATCH_SIZE_LIMIT:
|
372 |
-
texts = texts[:config.BATCH_SIZE_LIMIT]
|
373 |
-
|
374 |
-
results = []
|
375 |
-
batch_size = config.BATCH_PROCESSING_SIZE
|
376 |
-
|
377 |
-
for i in range(0, len(texts), batch_size):
|
378 |
-
batch = texts[i:i+batch_size]
|
379 |
-
|
380 |
-
if progress_callback:
|
381 |
-
progress_callback((i + len(batch)) / len(texts))
|
382 |
-
|
383 |
-
for text in batch:
|
384 |
-
try:
|
385 |
-
result = self.analyze_single(text, language, preprocessing_options)
|
386 |
-
result['batch_index'] = len(results)
|
387 |
-
result['text'] = text[:100] + '...' if len(text) > 100 else text
|
388 |
-
result['full_text'] = text
|
389 |
-
results.append(result)
|
390 |
-
except Exception as e:
|
391 |
-
results.append({
|
392 |
-
'sentiment': 'Error',
|
393 |
-
'confidence': 0.0,
|
394 |
-
'error': str(e),
|
395 |
-
'batch_index': len(results),
|
396 |
-
'text': text[:100] + '...' if len(text) > 100 else text,
|
397 |
-
'full_text': text
|
398 |
-
})
|
399 |
-
|
400 |
-
return results
|
401 |
-
|
402 |
-
# Advanced Analysis Engine (NEW)
|
403 |
-
class AdvancedAnalysisEngine:
|
404 |
-
"""Advanced analysis using SHAP and LIME"""
|
405 |
-
|
406 |
-
def __init__(self):
|
407 |
-
self.model_manager = ModelManager()
|
408 |
-
|
409 |
-
def create_prediction_function(self, model, tokenizer, device):
|
410 |
-
"""Create prediction function for LIME/SHAP"""
|
411 |
-
def predict_proba(texts):
|
412 |
-
results = []
|
413 |
-
for text in texts:
|
414 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True,
|
415 |
-
truncation=True, max_length=config.MAX_TEXT_LENGTH).to(device)
|
416 |
-
with torch.no_grad():
|
417 |
-
outputs = model(**inputs)
|
418 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
|
419 |
-
results.append(probs)
|
420 |
-
return np.array(results)
|
421 |
-
return predict_proba
|
422 |
-
|
423 |
-
@handle_errors(default_return=("Analysis failed", None, None))
|
424 |
-
def analyze_with_shap(self, text: str, language: str = 'auto') -> Tuple[str, go.Figure, Dict]:
|
425 |
-
"""Perform SHAP analysis"""
|
426 |
-
if not text.strip():
|
427 |
-
return "Please enter text for analysis", None, {}
|
428 |
-
|
429 |
-
# Detect language and get model
|
430 |
-
if language == 'auto':
|
431 |
-
detected_lang = self.model_manager.detect_language(text)
|
432 |
-
else:
|
433 |
-
detected_lang = language
|
434 |
-
|
435 |
-
model, tokenizer = self.model_manager.get_model(detected_lang)
|
436 |
-
|
437 |
-
# Create prediction function
|
438 |
-
predict_fn = self.create_prediction_function(model, tokenizer, self.model_manager.device)
|
439 |
-
|
440 |
try:
|
441 |
-
|
442 |
-
explainer = shap.Explainer(predict_fn, tokenizer)
|
443 |
-
|
444 |
-
# Get SHAP values
|
445 |
-
shap_values = explainer([text])
|
446 |
|
447 |
-
|
448 |
-
|
449 |
-
|
|
|
450 |
|
451 |
-
#
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
text=tokens,
|
467 |
-
textposition='outside',
|
468 |
-
marker_color=colors,
|
469 |
-
name='SHAP Values'
|
470 |
-
))
|
471 |
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
yaxis_title="SHAP Value",
|
476 |
-
height=500,
|
477 |
-
xaxis=dict(tickmode='array', tickvals=list(range(len(tokens))), ticktext=tokens)
|
478 |
-
)
|
479 |
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
'language': detected_lang,
|
484 |
-
'total_tokens': len(tokens),
|
485 |
-
'positive_influence': sum(1 for v in pos_values if v > 0),
|
486 |
-
'negative_influence': sum(1 for v in pos_values if v < 0),
|
487 |
-
'most_important_tokens': [(tokens[i], float(pos_values[i]))
|
488 |
-
for i in np.argsort(np.abs(pos_values))[-5:]]
|
489 |
}
|
490 |
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
- **Total Tokens:** {analysis_data['total_tokens']}
|
495 |
-
- **Positive Influence Tokens:** {analysis_data['positive_influence']}
|
496 |
-
- **Negative Influence Tokens:** {analysis_data['negative_influence']}
|
497 |
-
- **Most Important Tokens:** {', '.join([f"{token}({score:.3f})" for token, score in analysis_data['most_important_tokens']])}
|
498 |
-
"""
|
499 |
-
|
500 |
-
return summary_text, fig, analysis_data
|
501 |
|
502 |
except Exception as e:
|
503 |
-
logger.error(f"
|
504 |
-
return
|
505 |
|
506 |
-
@handle_errors(default_return=
|
507 |
-
def
|
508 |
-
"""
|
509 |
if not text.strip():
|
510 |
-
|
511 |
-
|
512 |
-
#
|
513 |
-
if
|
514 |
-
detected_lang = self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
515 |
else:
|
516 |
-
|
|
|
517 |
|
518 |
-
|
|
|
519 |
|
520 |
-
|
521 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
522 |
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
exp = explainer.explain_instance(text, predict_fn, num_features=20)
|
529 |
-
|
530 |
-
# Extract feature importance
|
531 |
-
lime_data = exp.as_list()
|
532 |
-
|
533 |
-
# Create visualization
|
534 |
-
words = [item[0] for item in lime_data]
|
535 |
-
scores = [item[1] for item in lime_data]
|
536 |
-
|
537 |
-
fig = go.Figure()
|
538 |
-
|
539 |
-
colors = ['red' if s < 0 else 'green' for s in scores]
|
540 |
-
|
541 |
-
fig.add_trace(go.Bar(
|
542 |
-
y=words,
|
543 |
-
x=scores,
|
544 |
-
orientation='h',
|
545 |
-
marker_color=colors,
|
546 |
-
text=[f'{s:.3f}' for s in scores],
|
547 |
-
textposition='auto',
|
548 |
-
name='LIME Importance'
|
549 |
-
))
|
550 |
-
|
551 |
-
fig.update_layout(
|
552 |
-
title="LIME Analysis - Feature Importance",
|
553 |
-
xaxis_title="Importance Score",
|
554 |
-
yaxis_title="Words/Phrases",
|
555 |
-
height=500
|
556 |
-
)
|
557 |
-
|
558 |
-
# Create analysis summary
|
559 |
-
analysis_data = {
|
560 |
-
'method': 'LIME',
|
561 |
-
'language': detected_lang,
|
562 |
-
'features_analyzed': len(lime_data),
|
563 |
-
'positive_features': sum(1 for _, score in lime_data if score > 0),
|
564 |
-
'negative_features': sum(1 for _, score in lime_data if score < 0),
|
565 |
-
'feature_importance': lime_data
|
566 |
-
}
|
567 |
-
|
568 |
-
summary_text = f"""
|
569 |
-
**LIME Analysis Results:**
|
570 |
-
- **Language:** {detected_lang.upper()}
|
571 |
-
- **Features Analyzed:** {analysis_data['features_analyzed']}
|
572 |
-
- **Positive Features:** {analysis_data['positive_features']}
|
573 |
-
- **Negative Features:** {analysis_data['negative_features']}
|
574 |
-
- **Top Features:** {', '.join([f"{word}({score:.3f})" for word, score in lime_data[:5]])}
|
575 |
-
"""
|
576 |
-
|
577 |
-
return summary_text, fig, analysis_data
|
578 |
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
# Advanced Plotly Visualization System (Updated - removed attention visualization)
|
584 |
-
class PlotlyVisualizer:
|
585 |
-
"""Enhanced Plotly visualizations"""
|
586 |
-
|
587 |
-
@staticmethod
|
588 |
-
@handle_errors(default_return=None)
|
589 |
-
def create_sentiment_gauge(result: Dict, theme: ThemeContext) -> go.Figure:
|
590 |
-
"""Create animated sentiment gauge"""
|
591 |
-
colors = theme.colors
|
592 |
-
|
593 |
-
if result.get('has_neutral', False):
|
594 |
-
# Three-way gauge
|
595 |
-
fig = go.Figure(go.Indicator(
|
596 |
-
mode="gauge+number+delta",
|
597 |
-
value=result['pos_prob'] * 100,
|
598 |
-
domain={'x': [0, 1], 'y': [0, 1]},
|
599 |
-
title={'text': f"Sentiment: {result['sentiment']}"},
|
600 |
-
delta={'reference': 50},
|
601 |
-
gauge={
|
602 |
-
'axis': {'range': [None, 100]},
|
603 |
-
'bar': {'color': colors['pos'] if result['sentiment'] == 'Positive' else colors['neg']},
|
604 |
-
'steps': [
|
605 |
-
{'range': [0, 33], 'color': colors['neg']},
|
606 |
-
{'range': [33, 67], 'color': colors['neu']},
|
607 |
-
{'range': [67, 100], 'color': colors['pos']}
|
608 |
-
],
|
609 |
-
'threshold': {
|
610 |
-
'line': {'color': "red", 'width': 4},
|
611 |
-
'thickness': 0.75,
|
612 |
-
'value': 90
|
613 |
-
}
|
614 |
-
}
|
615 |
-
))
|
616 |
-
else:
|
617 |
-
# Two-way gauge
|
618 |
-
fig = go.Figure(go.Indicator(
|
619 |
-
mode="gauge+number",
|
620 |
-
value=result['confidence'] * 100,
|
621 |
-
domain={'x': [0, 1], 'y': [0, 1]},
|
622 |
-
title={'text': f"Confidence: {result['sentiment']}"},
|
623 |
-
gauge={
|
624 |
-
'axis': {'range': [None, 100]},
|
625 |
-
'bar': {'color': colors['pos'] if result['sentiment'] == 'Positive' else colors['neg']},
|
626 |
-
'steps': [
|
627 |
-
{'range': [0, 50], 'color': "lightgray"},
|
628 |
-
{'range': [50, 100], 'color': "gray"}
|
629 |
-
]
|
630 |
-
}
|
631 |
-
))
|
632 |
|
633 |
-
|
634 |
-
|
|
|
|
|
|
|
635 |
|
636 |
@staticmethod
|
637 |
@handle_errors(default_return=None)
|
638 |
-
def
|
639 |
-
"""Create probability
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
650 |
|
651 |
fig = go.Figure(data=[
|
652 |
-
go.Bar(
|
653 |
-
|
|
|
|
|
|
|
|
|
|
|
654 |
])
|
655 |
|
656 |
fig.update_layout(
|
657 |
title="Sentiment Probabilities",
|
|
|
658 |
yaxis_title="Probability",
|
659 |
-
|
|
|
|
|
660 |
showlegend=False
|
661 |
)
|
662 |
|
@@ -664,160 +413,171 @@ class PlotlyVisualizer:
|
|
664 |
|
665 |
@staticmethod
|
666 |
@handle_errors(default_return=None)
|
667 |
-
def
|
668 |
-
"""Create
|
669 |
-
if
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
|
692 |
fig.update_layout(
|
693 |
-
|
694 |
-
|
695 |
-
yaxis_title="Keywords",
|
696 |
-
height=400,
|
697 |
-
showlegend=False
|
698 |
)
|
699 |
|
700 |
return fig
|
701 |
|
702 |
@staticmethod
|
703 |
@handle_errors(default_return=None)
|
704 |
-
def
|
705 |
-
"""Create
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
#
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
|
|
|
|
|
|
720 |
|
721 |
fig.update_layout(
|
722 |
-
title=f
|
723 |
-
|
|
|
|
|
|
|
|
|
724 |
)
|
725 |
|
726 |
return fig
|
727 |
|
728 |
@staticmethod
|
729 |
@handle_errors(default_return=None)
|
730 |
-
def
|
731 |
-
"""Create
|
732 |
-
|
733 |
-
|
734 |
-
if not confidences:
|
735 |
-
return go.Figure()
|
736 |
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
752 |
|
753 |
@staticmethod
|
754 |
@handle_errors(default_return=None)
|
755 |
-
def
|
756 |
-
"""Create comprehensive
|
757 |
-
if len(history) < 2:
|
758 |
-
return go.Figure()
|
759 |
-
|
760 |
-
# Create subplots
|
761 |
fig = make_subplots(
|
762 |
rows=2, cols=2,
|
763 |
-
subplot_titles=['Sentiment
|
764 |
-
'
|
765 |
-
specs=[[{"
|
766 |
-
[{"type": "
|
767 |
)
|
768 |
|
769 |
-
#
|
770 |
-
|
771 |
-
|
772 |
-
confidences = [item['confidence'] for item in history]
|
773 |
-
sentiments = [item['sentiment'] for item in history]
|
774 |
-
languages = [item.get('language', 'en') for item in history]
|
775 |
-
|
776 |
-
# Sentiment timeline
|
777 |
-
colors_map = {'Positive': theme.colors['pos'], 'Negative': theme.colors['neg'], 'Neutral': theme.colors['neu']}
|
778 |
-
colors = [colors_map.get(s, '#999999') for s in sentiments]
|
779 |
|
780 |
fig.add_trace(
|
781 |
-
go.
|
782 |
-
|
783 |
-
name='Positive Probability'),
|
784 |
row=1, col=1
|
785 |
)
|
786 |
|
787 |
-
# Confidence
|
|
|
788 |
fig.add_trace(
|
789 |
-
go.Histogram(x=
|
790 |
row=1, col=2
|
791 |
)
|
792 |
|
793 |
-
#
|
794 |
-
|
|
|
|
|
|
|
|
|
|
|
795 |
fig.add_trace(
|
796 |
-
go.
|
797 |
-
|
|
|
798 |
row=2, col=1
|
799 |
)
|
800 |
|
801 |
-
#
|
802 |
-
|
803 |
-
|
804 |
-
fig.
|
805 |
-
|
806 |
-
|
807 |
-
|
|
|
808 |
)
|
809 |
|
810 |
-
fig.update_layout(height=800, showlegend=False)
|
811 |
return fig
|
812 |
|
813 |
-
#
|
814 |
class DataHandler:
|
815 |
-
"""
|
816 |
|
817 |
@staticmethod
|
818 |
@handle_errors(default_return=(None, "Export failed"))
|
819 |
def export_data(data: List[Dict], format_type: str) -> Tuple[Optional[str], str]:
|
820 |
-
"""
|
821 |
if not data:
|
822 |
return None, "No data to export"
|
823 |
|
@@ -826,21 +586,18 @@ class DataHandler:
|
|
826 |
|
827 |
if format_type == 'csv':
|
828 |
writer = csv.writer(temp_file)
|
829 |
-
writer.writerow(['Timestamp', 'Text', 'Sentiment', 'Confidence', 'Language',
|
830 |
-
'Pos_Prob', 'Neg_Prob', 'Neu_Prob', 'Keywords', 'Word_Count'])
|
831 |
for entry in data:
|
832 |
-
keywords_str = "|".join([f"{word}:{score:.3f}" for word, score in entry.get('keywords', [])])
|
833 |
writer.writerow([
|
834 |
entry.get('timestamp', ''),
|
835 |
entry.get('text', ''),
|
836 |
entry.get('sentiment', ''),
|
837 |
f"{entry.get('confidence', 0):.4f}",
|
838 |
-
entry.get('language', 'en'),
|
839 |
f"{entry.get('pos_prob', 0):.4f}",
|
840 |
f"{entry.get('neg_prob', 0):.4f}",
|
841 |
-
f"{entry.get('
|
842 |
-
|
843 |
-
entry.get('
|
844 |
])
|
845 |
elif format_type == 'json':
|
846 |
json.dump(data, temp_file, indent=2, ensure_ascii=False)
|
@@ -851,26 +608,27 @@ class DataHandler:
|
|
851 |
@staticmethod
|
852 |
@handle_errors(default_return="")
|
853 |
def process_file(file) -> str:
|
854 |
-
"""Process uploaded
|
855 |
if not file:
|
856 |
return ""
|
857 |
-
|
858 |
content = file.read().decode('utf-8')
|
859 |
|
860 |
if file.name.endswith('.csv'):
|
|
|
861 |
csv_file = io.StringIO(content)
|
862 |
reader = csv.reader(csv_file)
|
863 |
try:
|
864 |
-
next(reader)
|
865 |
texts = []
|
866 |
for row in reader:
|
867 |
if row and row[0].strip():
|
868 |
text = row[0].strip().strip('"')
|
869 |
-
if text:
|
870 |
texts.append(text)
|
871 |
return '\n'.join(texts)
|
872 |
-
except:
|
873 |
-
lines = content.strip().split('\n')[1:]
|
874 |
texts = []
|
875 |
for line in lines:
|
876 |
if line.strip():
|
@@ -878,271 +636,171 @@ class DataHandler:
|
|
878 |
if text:
|
879 |
texts.append(text)
|
880 |
return '\n'.join(texts)
|
881 |
-
|
882 |
return content
|
883 |
|
884 |
-
# Main Application
|
885 |
class SentimentApp:
|
886 |
-
"""Main
|
887 |
|
888 |
def __init__(self):
|
889 |
self.engine = SentimentEngine()
|
890 |
-
self.advanced_engine = AdvancedAnalysisEngine() # NEW
|
891 |
self.history = HistoryManager()
|
892 |
self.data_handler = DataHandler()
|
893 |
|
894 |
# Multi-language examples
|
895 |
self.examples = [
|
896 |
-
["
|
897 |
-
["
|
898 |
-
["
|
899 |
-
["
|
900 |
-
["
|
901 |
]
|
902 |
|
903 |
-
@handle_errors(default_return=("Please enter text", None, None, None))
|
904 |
-
def analyze_single(self, text: str,
|
905 |
-
|
906 |
-
"""Single text analysis with basic visualizations (removed attention analysis)"""
|
907 |
if not text.strip():
|
908 |
-
return "Please enter text", None, None, None
|
909 |
|
910 |
-
|
911 |
-
language_map = {v: k for k, v in config.SUPPORTED_LANGUAGES.items()}
|
912 |
-
language_code = language_map.get(language, 'auto')
|
913 |
|
914 |
-
|
915 |
-
|
916 |
-
'
|
917 |
-
'
|
918 |
-
|
|
|
919 |
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
# Add to history
|
924 |
-
history_entry = {
|
925 |
-
'text': text[:100] + '...' if len(text) > 100 else text,
|
926 |
-
'full_text': text,
|
927 |
-
'sentiment': result['sentiment'],
|
928 |
-
'confidence': result['confidence'],
|
929 |
-
'pos_prob': result.get('pos_prob', 0),
|
930 |
-
'neg_prob': result.get('neg_prob', 0),
|
931 |
-
'neu_prob': result.get('neu_prob', 0),
|
932 |
-
'language': result['language'],
|
933 |
-
'keywords': result['keywords'],
|
934 |
-
'word_count': result['word_count'],
|
935 |
-
'analysis_type': 'single'
|
936 |
-
}
|
937 |
-
self.history.add(history_entry)
|
938 |
-
|
939 |
-
# Create visualizations
|
940 |
-
theme_ctx = ThemeContext(theme)
|
941 |
-
gauge_fig = PlotlyVisualizer.create_sentiment_gauge(result, theme_ctx)
|
942 |
-
bars_fig = PlotlyVisualizer.create_probability_bars(result, theme_ctx)
|
943 |
-
keyword_fig = PlotlyVisualizer.create_keyword_chart(result['keywords'], result['sentiment'], theme_ctx)
|
944 |
-
|
945 |
-
# Create comprehensive result text
|
946 |
-
keywords_str = ", ".join([f"{word}({score:.3f})" for word, score in result['keywords'][:5]])
|
947 |
-
|
948 |
-
info_text = f"""
|
949 |
-
**Analysis Results:**
|
950 |
-
- **Sentiment:** {result['sentiment']} ({result['confidence']:.3f} confidence)
|
951 |
-
- **Language:** {result['language'].upper()}
|
952 |
-
- **Keywords:** {keywords_str}
|
953 |
-
- **Statistics:** {result['word_count']} words, {result['char_count']} characters
|
954 |
-
"""
|
955 |
-
|
956 |
-
return info_text, gauge_fig, bars_fig, keyword_fig
|
957 |
-
|
958 |
-
@handle_errors(default_return=("Please enter texts", None, None, None))
|
959 |
-
def analyze_batch(self, batch_text: str, language: str, theme: str,
|
960 |
-
clean_text: bool, remove_punct: bool, remove_nums: bool):
|
961 |
-
"""Enhanced batch analysis"""
|
962 |
-
if not batch_text.strip():
|
963 |
-
return "Please enter texts (one per line)", None, None, None
|
964 |
|
965 |
-
|
966 |
-
|
|
|
|
|
967 |
|
968 |
-
|
969 |
-
|
|
|
|
|
|
|
970 |
|
971 |
-
|
972 |
-
|
|
|
|
|
|
|
|
|
|
|
973 |
|
974 |
-
|
975 |
-
|
976 |
-
|
977 |
|
978 |
-
|
979 |
-
'clean_text': clean_text,
|
980 |
-
'remove_punctuation': remove_punct,
|
981 |
-
'remove_numbers': remove_nums
|
982 |
-
}
|
983 |
|
984 |
-
|
985 |
-
|
986 |
-
|
987 |
-
# Add to history
|
988 |
-
batch_entries = []
|
989 |
-
for result in results:
|
990 |
-
if 'error' not in result:
|
991 |
-
entry = {
|
992 |
-
'text': result['text'],
|
993 |
-
'full_text': result['full_text'],
|
994 |
-
'sentiment': result['sentiment'],
|
995 |
-
'confidence': result['confidence'],
|
996 |
-
'pos_prob': result.get('pos_prob', 0),
|
997 |
-
'neg_prob': result.get('neg_prob', 0),
|
998 |
-
'neu_prob': result.get('neu_prob', 0),
|
999 |
-
'language': result['language'],
|
1000 |
-
'keywords': result['keywords'],
|
1001 |
-
'word_count': result['word_count'],
|
1002 |
-
'analysis_type': 'batch',
|
1003 |
-
'batch_index': result['batch_index']
|
1004 |
-
}
|
1005 |
-
batch_entries.append(entry)
|
1006 |
-
|
1007 |
-
self.history.add_batch(batch_entries)
|
1008 |
-
|
1009 |
-
# Create visualizations
|
1010 |
-
theme_ctx = ThemeContext(theme)
|
1011 |
-
summary_fig = PlotlyVisualizer.create_batch_summary(results, theme_ctx)
|
1012 |
-
confidence_fig = PlotlyVisualizer.create_confidence_distribution(results)
|
1013 |
-
|
1014 |
-
# Create results DataFrame
|
1015 |
-
df_data = []
|
1016 |
-
for result in results:
|
1017 |
-
if 'error' in result:
|
1018 |
-
df_data.append({
|
1019 |
-
'Index': result['batch_index'] + 1,
|
1020 |
-
'Text': result['text'],
|
1021 |
-
'Sentiment': 'Error',
|
1022 |
-
'Confidence': 0.0,
|
1023 |
-
'Language': 'Unknown',
|
1024 |
-
'Error': result['error']
|
1025 |
-
})
|
1026 |
-
else:
|
1027 |
-
keywords_str = ', '.join([word for word, _ in result['keywords'][:3]])
|
1028 |
-
df_data.append({
|
1029 |
-
'Index': result['batch_index'] + 1,
|
1030 |
-
'Text': result['text'],
|
1031 |
-
'Sentiment': result['sentiment'],
|
1032 |
-
'Confidence': f"{result['confidence']:.3f}",
|
1033 |
-
'Language': result['language'].upper(),
|
1034 |
-
'Keywords': keywords_str
|
1035 |
-
})
|
1036 |
-
|
1037 |
-
df = pd.DataFrame(df_data)
|
1038 |
-
|
1039 |
-
# Create summary text
|
1040 |
-
successful_results = [r for r in results if 'error' not in r]
|
1041 |
-
error_count = len(results) - len(successful_results)
|
1042 |
-
|
1043 |
-
if successful_results:
|
1044 |
-
sentiment_counts = Counter([r['sentiment'] for r in successful_results])
|
1045 |
-
avg_confidence = np.mean([r['confidence'] for r in successful_results])
|
1046 |
-
languages = Counter([r['language'] for r in successful_results])
|
1047 |
-
|
1048 |
-
summary_text = f"""
|
1049 |
-
**Batch Analysis Summary:**
|
1050 |
-
- **Total Texts:** {len(texts)}
|
1051 |
-
- **Successful:** {len(successful_results)}
|
1052 |
-
- **Errors:** {error_count}
|
1053 |
-
- **Average Confidence:** {avg_confidence:.3f}
|
1054 |
-
- **Sentiments:** {dict(sentiment_counts)}
|
1055 |
-
- **Languages Detected:** {dict(languages)}
|
1056 |
-
"""
|
1057 |
-
else:
|
1058 |
-
summary_text = f"All {len(texts)} texts failed to analyze."
|
1059 |
-
|
1060 |
-
return summary_text, df, summary_fig, confidence_fig
|
1061 |
-
|
1062 |
-
# NEW: Advanced analysis methods
|
1063 |
-
@handle_errors(default_return=("Please enter text", None))
|
1064 |
-
def analyze_with_shap(self, text: str, language: str):
|
1065 |
-
"""Perform SHAP analysis"""
|
1066 |
-
language_map = {v: k for k, v in config.SUPPORTED_LANGUAGES.items()}
|
1067 |
-
language_code = language_map.get(language, 'auto')
|
1068 |
-
|
1069 |
-
return self.advanced_engine.analyze_with_shap(text, language_code)
|
1070 |
-
|
1071 |
-
@handle_errors(default_return=("Please enter text", None))
|
1072 |
-
def analyze_with_lime(self, text: str, language: str):
|
1073 |
-
"""Perform LIME analysis"""
|
1074 |
-
language_map = {v: k for k, v in config.SUPPORTED_LANGUAGES.items()}
|
1075 |
-
language_code = language_map.get(language, 'auto')
|
1076 |
|
1077 |
-
|
|
|
|
|
1078 |
|
1079 |
@handle_errors(default_return=(None, "No history available"))
|
1080 |
def plot_history(self, theme: str = 'default'):
|
1081 |
-
"""Plot
|
1082 |
history = self.history.get_all()
|
1083 |
if len(history) < 2:
|
1084 |
return None, f"Need at least 2 analyses for trends. Current: {len(history)}"
|
1085 |
|
1086 |
theme_ctx = ThemeContext(theme)
|
1087 |
|
1088 |
-
|
1089 |
-
|
1090 |
-
|
1091 |
-
|
1092 |
-
|
1093 |
-
|
1094 |
-
|
1095 |
-
|
1096 |
-
|
1097 |
-
|
1098 |
-
|
1099 |
-
|
1100 |
-
|
1101 |
-
|
1102 |
-
|
1103 |
-
|
1104 |
-
|
1105 |
-
|
1106 |
-
|
1107 |
-
|
1108 |
-
|
1109 |
-
|
1110 |
-
|
1111 |
-
|
1112 |
-
|
1113 |
-
|
1114 |
-
|
1115 |
-
|
1116 |
-
|
1117 |
-
|
1118 |
-
|
1119 |
-
|
1120 |
-
|
1121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1122 |
|
1123 |
-
# Gradio Interface
|
1124 |
def create_interface():
|
1125 |
-
"""Create
|
1126 |
app = SentimentApp()
|
1127 |
|
1128 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="
|
1129 |
-
gr.Markdown("# 🌍
|
1130 |
-
gr.Markdown("
|
1131 |
|
1132 |
with gr.Tab("Single Analysis"):
|
1133 |
with gr.Row():
|
1134 |
with gr.Column():
|
1135 |
text_input = gr.Textbox(
|
1136 |
-
label="
|
1137 |
-
placeholder="Enter your
|
1138 |
lines=5
|
1139 |
)
|
1140 |
-
|
1141 |
with gr.Row():
|
1142 |
-
|
1143 |
-
|
1144 |
-
|
1145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1146 |
)
|
1147 |
theme_selector = gr.Dropdown(
|
1148 |
choices=list(config.THEMES.keys()),
|
@@ -1150,218 +808,142 @@ def create_interface():
|
|
1150 |
label="Theme"
|
1151 |
)
|
1152 |
|
1153 |
-
with gr.Row():
|
1154 |
-
clean_text_cb = gr.Checkbox(label="Clean Text", value=False)
|
1155 |
-
remove_punct_cb = gr.Checkbox(label="Remove Punctuation", value=False)
|
1156 |
-
remove_nums_cb = gr.Checkbox(label="Remove Numbers", value=False)
|
1157 |
-
|
1158 |
-
analyze_btn = gr.Button("Analyze", variant="primary", size="lg")
|
1159 |
-
|
1160 |
gr.Examples(
|
1161 |
examples=app.examples,
|
1162 |
inputs=text_input,
|
1163 |
-
|
1164 |
)
|
1165 |
|
1166 |
with gr.Column():
|
1167 |
-
result_output = gr.Textbox(label="Analysis
|
1168 |
|
1169 |
with gr.Row():
|
1170 |
-
|
1171 |
-
|
1172 |
|
1173 |
with gr.Row():
|
1174 |
-
|
1175 |
-
|
1176 |
-
# NEW: Advanced Analysis Tab
|
1177 |
-
with gr.Tab("Advanced Analysis"):
|
1178 |
-
gr.Markdown("## 🔬 Explainable AI Analysis")
|
1179 |
-
gr.Markdown("Use SHAP and LIME to understand which words and phrases most influence the sentiment prediction.")
|
1180 |
-
|
1181 |
-
with gr.Row():
|
1182 |
-
with gr.Column():
|
1183 |
-
advanced_text_input = gr.Textbox(
|
1184 |
-
label="Enter Text for Advanced Analysis",
|
1185 |
-
placeholder="Enter text to analyze with SHAP and LIME...",
|
1186 |
-
lines=6
|
1187 |
-
)
|
1188 |
-
|
1189 |
-
advanced_language = gr.Dropdown(
|
1190 |
-
choices=list(config.SUPPORTED_LANGUAGES.values()),
|
1191 |
-
value="Auto Detect",
|
1192 |
-
label="Language"
|
1193 |
-
)
|
1194 |
-
|
1195 |
-
with gr.Row():
|
1196 |
-
shap_btn = gr.Button("SHAP Analysis", variant="primary")
|
1197 |
-
lime_btn = gr.Button("LIME Analysis", variant="secondary")
|
1198 |
-
|
1199 |
-
gr.Markdown("""
|
1200 |
-
**Analysis Methods:**
|
1201 |
-
- **SHAP**: Shows token-level importance scores
|
1202 |
-
- **LIME**: Explains predictions by perturbing input features
|
1203 |
-
""")
|
1204 |
-
|
1205 |
-
with gr.Column():
|
1206 |
-
advanced_results = gr.Textbox(label="Analysis Summary", lines=10)
|
1207 |
-
|
1208 |
-
with gr.Row():
|
1209 |
-
advanced_plot = gr.Plot(label="Feature Importance Visualization")
|
1210 |
|
1211 |
with gr.Tab("Batch Analysis"):
|
1212 |
with gr.Row():
|
1213 |
with gr.Column():
|
1214 |
-
file_upload = gr.File(
|
1215 |
-
label="Upload File (CSV/TXT)",
|
1216 |
-
file_types=[".csv", ".txt"]
|
1217 |
-
)
|
1218 |
batch_input = gr.Textbox(
|
1219 |
-
label="
|
1220 |
-
|
1221 |
-
|
1222 |
)
|
1223 |
-
|
1224 |
-
with gr.Row():
|
1225 |
-
batch_language = gr.Dropdown(
|
1226 |
-
choices=list(config.SUPPORTED_LANGUAGES.values()),
|
1227 |
-
value="Auto Detect",
|
1228 |
-
label="Language"
|
1229 |
-
)
|
1230 |
-
batch_theme = gr.Dropdown(
|
1231 |
-
choices=list(config.THEMES.keys()),
|
1232 |
-
value="default",
|
1233 |
-
label="Theme"
|
1234 |
-
)
|
1235 |
-
|
1236 |
-
with gr.Row():
|
1237 |
-
batch_clean_cb = gr.Checkbox(label="Clean Text", value=False)
|
1238 |
-
batch_punct_cb = gr.Checkbox(label="Remove Punctuation", value=False)
|
1239 |
-
batch_nums_cb = gr.Checkbox(label="Remove Numbers", value=False)
|
1240 |
-
|
1241 |
-
with gr.Row():
|
1242 |
-
load_file_btn = gr.Button("Load File")
|
1243 |
-
analyze_batch_btn = gr.Button("Analyze Batch", variant="primary")
|
1244 |
|
1245 |
with gr.Column():
|
1246 |
-
|
1247 |
-
|
1248 |
-
|
1249 |
-
|
1250 |
-
|
1251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1252 |
|
1253 |
-
|
1254 |
-
batch_plot = gr.Plot(label="Batch Analysis Summary")
|
1255 |
-
confidence_dist_plot = gr.Plot(label="Confidence Distribution")
|
1256 |
|
1257 |
-
with gr.Tab("History &
|
1258 |
with gr.Row():
|
1259 |
-
|
1260 |
-
|
1261 |
-
|
1262 |
-
clear_history_btn = gr.Button("Clear History", variant="stop")
|
1263 |
-
status_btn = gr.Button("Get Status")
|
1264 |
-
|
1265 |
-
history_theme = gr.Dropdown(
|
1266 |
-
choices=list(config.THEMES.keys()),
|
1267 |
-
value="default",
|
1268 |
-
label="Dashboard Theme"
|
1269 |
-
)
|
1270 |
-
|
1271 |
-
with gr.Row():
|
1272 |
-
export_csv_btn = gr.Button("Export CSV")
|
1273 |
-
export_json_btn = gr.Button("Export JSON")
|
1274 |
-
|
1275 |
-
with gr.Column():
|
1276 |
-
history_status = gr.Textbox(label="History Status", lines=8)
|
1277 |
-
|
1278 |
-
history_dashboard = gr.Plot(label="History Analytics Dashboard")
|
1279 |
|
1280 |
with gr.Row():
|
1281 |
-
|
1282 |
-
|
1283 |
-
|
1284 |
-
|
1285 |
-
|
1286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1287 |
analyze_btn.click(
|
1288 |
app.analyze_single,
|
1289 |
-
inputs=[text_input,
|
1290 |
-
|
1291 |
-
outputs=[result_output, gauge_plot, probability_plot, keyword_plot]
|
1292 |
-
)
|
1293 |
-
|
1294 |
-
# Advanced Analysis (NEW)
|
1295 |
-
shap_btn.click(
|
1296 |
-
app.analyze_with_shap,
|
1297 |
-
inputs=[advanced_text_input, advanced_language],
|
1298 |
-
outputs=[advanced_results, advanced_plot]
|
1299 |
)
|
1300 |
|
1301 |
-
|
1302 |
-
app.
|
1303 |
-
inputs=
|
1304 |
-
outputs=[advanced_results, advanced_plot]
|
1305 |
-
)
|
1306 |
-
|
1307 |
-
# Batch Analysis
|
1308 |
-
load_file_btn.click(
|
1309 |
-
app.data_handler.process_file,
|
1310 |
-
inputs=file_upload,
|
1311 |
outputs=batch_input
|
1312 |
)
|
1313 |
|
1314 |
-
|
1315 |
-
app.analyze_batch,
|
1316 |
-
inputs=[batch_input,
|
1317 |
-
|
1318 |
-
outputs=[batch_summary, batch_results_df, batch_plot, confidence_dist_plot]
|
1319 |
)
|
1320 |
|
1321 |
-
|
1322 |
-
|
1323 |
-
|
1324 |
-
|
1325 |
-
outputs=[history_dashboard, history_status]
|
1326 |
)
|
1327 |
|
1328 |
-
|
1329 |
lambda: f"Cleared {app.history.clear()} entries",
|
1330 |
outputs=history_status
|
1331 |
)
|
1332 |
|
1333 |
status_btn.click(
|
1334 |
-
app.
|
1335 |
outputs=history_status
|
1336 |
)
|
1337 |
|
1338 |
-
|
1339 |
lambda: app.data_handler.export_data(app.history.get_all(), 'csv'),
|
1340 |
-
outputs=[
|
1341 |
)
|
1342 |
|
1343 |
-
|
1344 |
lambda: app.data_handler.export_data(app.history.get_all(), 'json'),
|
1345 |
-
outputs=[
|
1346 |
)
|
1347 |
|
1348 |
return demo
|
1349 |
|
1350 |
# Application Entry Point
|
1351 |
if __name__ == "__main__":
|
1352 |
-
logging.basicConfig(
|
1353 |
-
|
1354 |
-
|
1355 |
-
|
1356 |
-
|
1357 |
-
|
1358 |
-
|
1359 |
-
|
1360 |
-
share=True,
|
1361 |
-
server_name="0.0.0.0",
|
1362 |
-
server_port=7860,
|
1363 |
-
show_error=True
|
1364 |
-
)
|
1365 |
-
except Exception as e:
|
1366 |
-
logger.error(f"Failed to launch application: {e}")
|
1367 |
-
raise
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
4 |
import plotly.graph_objects as go
|
5 |
import plotly.express as px
|
6 |
from plotly.subplots import make_subplots
|
|
|
18 |
from dataclasses import dataclass
|
19 |
from typing import List, Dict, Optional, Tuple, Any, Callable
|
20 |
from contextlib import contextmanager
|
|
|
|
|
|
|
|
|
21 |
import gc
|
22 |
+
import base64
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Configuration
|
25 |
@dataclass
|
|
|
31 |
CACHE_SIZE: int = 128
|
32 |
BATCH_PROCESSING_SIZE: int = 8
|
33 |
|
34 |
+
# Visualization settings
|
35 |
+
FIGURE_WIDTH: int = 800
|
36 |
+
FIGURE_HEIGHT: int = 500
|
37 |
+
WORDCLOUD_SIZE: Tuple[int, int] = (800, 400)
|
38 |
+
|
39 |
+
THEMES = {
|
40 |
+
'default': {'pos': '#4ecdc4', 'neg': '#ff6b6b'},
|
41 |
+
'ocean': {'pos': '#0077be', 'neg': '#ff6b35'},
|
42 |
+
'forest': {'pos': '#228b22', 'neg': '#dc143c'},
|
43 |
+
'sunset': {'pos': '#ff8c00', 'neg': '#8b0000'}
|
44 |
}
|
45 |
|
46 |
+
# Multi-language models
|
47 |
MODELS = {
|
48 |
+
'multilingual': {
|
49 |
+
'name': 'cardiffnlp/twitter-xlm-roberta-base-sentiment',
|
50 |
+
'labels': ['NEGATIVE', 'NEUTRAL', 'POSITIVE']
|
51 |
+
},
|
52 |
+
'english': {
|
53 |
+
'name': 'cardiffnlp/twitter-roberta-base-sentiment-latest',
|
54 |
+
'labels': ['NEGATIVE', 'NEUTRAL', 'POSITIVE']
|
55 |
+
},
|
56 |
+
'chinese': {
|
57 |
+
'name': 'uer/roberta-base-finetuned-chinanews-chinese',
|
58 |
+
'labels': ['NEGATIVE', 'POSITIVE']
|
59 |
+
},
|
60 |
+
'spanish': {
|
61 |
+
'name': 'finiteautomata/beto-sentiment-analysis',
|
62 |
+
'labels': ['NEGATIVE', 'NEUTRAL', 'POSITIVE']
|
63 |
+
},
|
64 |
+
'french': {
|
65 |
+
'name': 'tblard/tf-allocine',
|
66 |
+
'labels': ['NEGATIVE', 'POSITIVE']
|
67 |
+
}
|
68 |
}
|
69 |
|
70 |
+
STOP_WORDS = {
|
71 |
+
'en': {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were', 'be', 'been', 'have', 'has', 'had', 'will', 'would', 'could', 'should'},
|
72 |
+
'zh': {'的', '了', '在', '是', '我', '有', '和', '就', '不', '人', '都', '一', '一个', '上', '也', '很', '到', '说', '要', '去', '你', '会', '着', '没有', '看'},
|
73 |
+
'es': {'el', 'la', 'de', 'que', 'y', 'a', 'en', 'un', 'es', 'se', 'no', 'te', 'lo', 'le', 'da', 'su', 'por', 'son', 'con', 'para', 'al', 'del', 'los', 'las'},
|
74 |
+
'fr': {'le', 'la', 'les', 'de', 'un', 'une', 'du', 'des', 'et', 'à', 'ce', 'il', 'que', 'qui', 'ne', 'se', 'pas', 'tout', 'être', 'avoir', 'sur', 'avec', 'par'},
|
|
|
75 |
}
|
76 |
|
77 |
config = Config()
|
|
|
|
|
|
|
78 |
logger = logging.getLogger(__name__)
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
# Decorators and Context Managers
|
81 |
def handle_errors(default_return=None):
|
82 |
"""Centralized error handling decorator"""
|
|
|
91 |
return wrapper
|
92 |
return decorator
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
class ThemeContext:
|
95 |
"""Theme management context"""
|
96 |
def __init__(self, theme: str = 'default'):
|
97 |
self.theme = theme
|
98 |
self.colors = config.THEMES.get(theme, config.THEMES['default'])
|
99 |
|
100 |
+
# Enhanced Model Manager for Multi-language Support
|
101 |
class ModelManager:
|
102 |
"""Multi-language model manager with lazy loading"""
|
103 |
_instance = None
|
104 |
+
_models = {}
|
105 |
+
_tokenizers = {}
|
106 |
+
_pipelines = {}
|
107 |
+
_device = None
|
108 |
|
109 |
def __new__(cls):
|
110 |
if cls._instance is None:
|
111 |
cls._instance = super().__new__(cls)
|
|
|
112 |
return cls._instance
|
113 |
|
114 |
+
@property
|
115 |
+
def device(self):
|
116 |
+
if self._device is None:
|
117 |
+
self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
118 |
+
return self._device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
def get_pipeline(self, model_key: str = 'multilingual'):
|
121 |
+
"""Get or create sentiment analysis pipeline for specified model"""
|
122 |
+
if model_key not in self._pipelines:
|
123 |
+
try:
|
124 |
+
model_config = config.MODELS[model_key]
|
125 |
+
self._pipelines[model_key] = pipeline(
|
126 |
+
"sentiment-analysis",
|
127 |
+
model=model_config['name'],
|
128 |
+
tokenizer=model_config['name'],
|
129 |
+
device=0 if torch.cuda.is_available() else -1,
|
130 |
+
top_k=None
|
131 |
+
)
|
132 |
+
logger.info(f"Model {model_key} loaded successfully")
|
133 |
+
except Exception as e:
|
134 |
+
logger.error(f"Failed to load model {model_key}: {e}")
|
135 |
+
# Fallback to multilingual model
|
136 |
+
if model_key != 'multilingual':
|
137 |
+
return self.get_pipeline('multilingual')
|
138 |
+
raise
|
139 |
+
return self._pipelines[model_key]
|
140 |
+
|
141 |
+
def get_model_and_tokenizer(self, model_key: str = 'multilingual'):
|
142 |
+
"""Get model and tokenizer for attention extraction"""
|
143 |
+
if model_key not in self._models:
|
144 |
+
try:
|
145 |
+
model_config = config.MODELS[model_key]
|
146 |
+
self._tokenizers[model_key] = AutoTokenizer.from_pretrained(model_config['name'])
|
147 |
+
self._models[model_key] = AutoModelForSequenceClassification.from_pretrained(model_config['name'])
|
148 |
+
self._models[model_key].to(self.device)
|
149 |
+
logger.info(f"Model and tokenizer {model_key} loaded for attention extraction")
|
150 |
+
except Exception as e:
|
151 |
+
logger.error(f"Failed to load model/tokenizer {model_key}: {e}")
|
152 |
+
if model_key != 'multilingual':
|
153 |
+
return self.get_model_and_tokenizer('multilingual')
|
154 |
+
raise
|
155 |
+
return self._models[model_key], self._tokenizers[model_key]
|
156 |
+
|
157 |
+
# Language Detection
|
158 |
+
class LanguageDetector:
|
159 |
+
"""Simple language detection based on character patterns"""
|
160 |
|
161 |
@staticmethod
|
162 |
def detect_language(text: str) -> str:
|
163 |
+
"""Detect language based on character patterns"""
|
164 |
+
# Chinese characters
|
165 |
+
if re.search(r'[\u4e00-\u9fff]', text):
|
166 |
+
return 'chinese'
|
167 |
+
# Spanish patterns
|
168 |
+
elif re.search(r'[ñáéíóúü]', text.lower()):
|
169 |
+
return 'spanish'
|
170 |
+
# French patterns
|
171 |
+
elif re.search(r'[àâäçéèêëïîôùûüÿ]', text.lower()):
|
172 |
+
return 'french'
|
173 |
+
# Default to English/Multilingual
|
174 |
+
else:
|
175 |
+
return 'multilingual'
|
176 |
|
177 |
+
# Simplified Core Classes
|
178 |
class TextProcessor:
|
179 |
"""Optimized text processing with multi-language support"""
|
|
|
180 |
@staticmethod
|
181 |
@lru_cache(maxsize=config.CACHE_SIZE)
|
182 |
+
def clean_text(text: str, language: str = 'en') -> Tuple[str, ...]:
|
183 |
+
"""Single-pass text cleaning with language-specific stop words"""
|
184 |
+
words = re.findall(r'\b\w{2,}\b', text.lower())
|
185 |
+
stop_words = config.STOP_WORDS.get(language, config.STOP_WORDS['en'])
|
186 |
+
return tuple(w for w in words if w not in stop_words and len(w) >= config.MIN_WORD_LENGTH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
|
|
188 |
class HistoryManager:
|
189 |
+
"""Simplified history management"""
|
190 |
def __init__(self):
|
191 |
self._history = []
|
192 |
|
193 |
def add(self, entry: Dict):
|
194 |
+
self._history.append({**entry, 'timestamp': datetime.now().isoformat()})
|
|
|
|
|
195 |
if len(self._history) > config.MAX_HISTORY_SIZE:
|
196 |
self._history = self._history[-config.MAX_HISTORY_SIZE:]
|
197 |
|
|
|
|
|
|
|
|
|
|
|
198 |
def get_all(self) -> List[Dict]:
|
199 |
return self._history.copy()
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
def clear(self) -> int:
|
202 |
count = len(self._history)
|
203 |
self._history.clear()
|
|
|
205 |
|
206 |
def size(self) -> int:
|
207 |
return len(self._history)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
+
# Core Analysis Engine with Multi-language Support
|
210 |
class SentimentEngine:
|
211 |
+
"""Multi-language sentiment analysis with attention-based keyword extraction"""
|
|
|
212 |
def __init__(self):
|
213 |
self.model_manager = ModelManager()
|
214 |
+
self.language_detector = LanguageDetector()
|
215 |
|
216 |
+
def extract_key_words(self, text: str, model_key: str = 'multilingual', top_k: int = 10) -> List[Tuple[str, float]]:
|
217 |
+
"""Extract contributing words using attention weights"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
try:
|
219 |
+
model, tokenizer = self.model_manager.get_model_and_tokenizer(model_key)
|
|
|
|
|
|
|
|
|
220 |
|
221 |
+
inputs = tokenizer(
|
222 |
+
text, return_tensors="pt", padding=True,
|
223 |
+
truncation=True, max_length=config.MAX_TEXT_LENGTH
|
224 |
+
).to(self.model_manager.device)
|
225 |
|
226 |
+
# Get model outputs with attention weights
|
227 |
+
with torch.no_grad():
|
228 |
+
outputs = model(**inputs, output_attentions=True)
|
229 |
+
attention = outputs.attentions
|
230 |
+
|
231 |
+
# Use the last layer's attention, average over all heads
|
232 |
+
last_attention = attention[-1]
|
233 |
+
avg_attention = last_attention.mean(dim=1)
|
234 |
+
|
235 |
+
# Focus on attention to [CLS] token
|
236 |
+
cls_attention = avg_attention[0, 0, :]
|
237 |
+
|
238 |
+
# Get tokens and their attention scores
|
239 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
|
240 |
+
attention_scores = cls_attention.cpu().numpy()
|
241 |
+
|
242 |
+
# Filter out special tokens and combine subword tokens
|
243 |
+
word_scores = {}
|
244 |
+
current_word = ""
|
245 |
+
current_score = 0.0
|
246 |
+
|
247 |
+
for i, (token, score) in enumerate(zip(tokens, attention_scores)):
|
248 |
+
if token in ['[CLS]', '[SEP]', '[PAD]', '<s>', '</s>', '<pad>']:
|
249 |
+
continue
|
250 |
+
|
251 |
+
if token.startswith('##') or token.startswith('▁'):
|
252 |
+
# Subword token
|
253 |
+
current_word += token[2:] if token.startswith('##') else token[1:]
|
254 |
+
current_score = max(current_score, score)
|
255 |
+
else:
|
256 |
+
# New word, save previous if exists
|
257 |
+
if current_word and len(current_word) >= config.MIN_WORD_LENGTH:
|
258 |
+
word_scores[current_word.lower()] = current_score
|
259 |
+
|
260 |
+
current_word = token
|
261 |
+
current_score = score
|
262 |
|
263 |
+
# Don't forget the last word
|
264 |
+
if current_word and len(current_word) >= config.MIN_WORD_LENGTH:
|
265 |
+
word_scores[current_word.lower()] = current_score
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
+
# Filter out stop words and sort by attention score
|
268 |
+
lang_code = 'zh' if model_key == 'chinese' else 'es' if model_key == 'spanish' else 'fr' if model_key == 'french' else 'en'
|
269 |
+
stop_words = config.STOP_WORDS.get(lang_code, config.STOP_WORDS['en'])
|
|
|
|
|
|
|
|
|
270 |
|
271 |
+
filtered_words = {
|
272 |
+
word: score for word, score in word_scores.items()
|
273 |
+
if word not in stop_words and len(word) >= config.MIN_WORD_LENGTH
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
}
|
275 |
|
276 |
+
# Sort by attention score and return top_k
|
277 |
+
sorted_words = sorted(filtered_words.items(), key=lambda x: x[1], reverse=True)
|
278 |
+
return sorted_words[:top_k]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
except Exception as e:
|
281 |
+
logger.error(f"Key word extraction failed: {e}")
|
282 |
+
return []
|
283 |
|
284 |
+
@handle_errors(default_return={'sentiment': 'Unknown', 'confidence': 0.0, 'key_words': []})
|
285 |
+
def analyze_single(self, text: str, model_key: str = None) -> Dict:
|
286 |
+
"""Analyze single text with automatic language detection"""
|
287 |
if not text.strip():
|
288 |
+
raise ValueError("Empty text")
|
289 |
+
|
290 |
+
# Auto-detect language if not specified
|
291 |
+
if model_key is None:
|
292 |
+
detected_lang = self.language_detector.detect_language(text)
|
293 |
+
model_key = detected_lang if detected_lang in config.MODELS else 'multilingual'
|
294 |
+
|
295 |
+
# Get sentiment analysis pipeline
|
296 |
+
classifier = self.model_manager.get_pipeline(model_key)
|
297 |
+
results = classifier(text)
|
298 |
+
|
299 |
+
# Process results based on model output format
|
300 |
+
if isinstance(results[0], list):
|
301 |
+
results = results[0]
|
302 |
+
|
303 |
+
# Map results to standardized format
|
304 |
+
sentiment_map = {'POSITIVE': 'Positive', 'NEGATIVE': 'Negative', 'NEUTRAL': 'Neutral'}
|
305 |
+
|
306 |
+
# Find positive and negative scores
|
307 |
+
pos_score = 0.0
|
308 |
+
neg_score = 0.0
|
309 |
+
neutral_score = 0.0
|
310 |
+
|
311 |
+
for result in results:
|
312 |
+
label = result['label']
|
313 |
+
score = result['score']
|
314 |
+
|
315 |
+
if 'POSITIVE' in label:
|
316 |
+
pos_score = score
|
317 |
+
elif 'NEGATIVE' in label:
|
318 |
+
neg_score = score
|
319 |
+
elif 'NEUTRAL' in label:
|
320 |
+
neutral_score = score
|
321 |
+
|
322 |
+
# Determine final sentiment
|
323 |
+
if pos_score > neg_score and pos_score > neutral_score:
|
324 |
+
sentiment = 'Positive'
|
325 |
+
confidence = pos_score
|
326 |
+
elif neg_score > pos_score and neg_score > neutral_score:
|
327 |
+
sentiment = 'Negative'
|
328 |
+
confidence = neg_score
|
329 |
else:
|
330 |
+
sentiment = 'Neutral'
|
331 |
+
confidence = neutral_score
|
332 |
|
333 |
+
# Extract key contributing words
|
334 |
+
key_words = self.extract_key_words(text, model_key)
|
335 |
|
336 |
+
return {
|
337 |
+
'sentiment': sentiment,
|
338 |
+
'confidence': float(confidence),
|
339 |
+
'pos_prob': float(pos_score),
|
340 |
+
'neg_prob': float(neg_score),
|
341 |
+
'neutral_prob': float(neutral_score),
|
342 |
+
'key_words': key_words,
|
343 |
+
'language': model_key
|
344 |
+
}
|
345 |
+
|
346 |
+
@handle_errors(default_return=[])
|
347 |
+
def analyze_batch(self, texts: List[str], model_key: str = None, progress_callback=None) -> List[Dict]:
|
348 |
+
"""Optimized batch processing with key words"""
|
349 |
+
if len(texts) > config.BATCH_SIZE_LIMIT:
|
350 |
+
texts = texts[:config.BATCH_SIZE_LIMIT]
|
351 |
|
352 |
+
results = []
|
353 |
+
|
354 |
+
for i, text in enumerate(texts):
|
355 |
+
if progress_callback:
|
356 |
+
progress_callback((i + 1) / len(texts))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
+
result = self.analyze_single(text, model_key)
|
359 |
+
result['text'] = text[:50] + '...' if len(text) > 50 else text
|
360 |
+
result['full_text'] = text
|
361 |
+
results.append(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
|
363 |
+
return results
|
364 |
+
|
365 |
+
# Plotly Visualization System
|
366 |
+
class PlotFactory:
|
367 |
+
"""Factory for creating Plotly visualizations"""
|
368 |
|
369 |
@staticmethod
|
370 |
@handle_errors(default_return=None)
|
371 |
+
def create_sentiment_bars(result: Dict, theme: ThemeContext) -> go.Figure:
|
372 |
+
"""Create sentiment probability bars using Plotly"""
|
373 |
+
labels = []
|
374 |
+
values = []
|
375 |
+
colors = []
|
376 |
+
|
377 |
+
if 'neg_prob' in result and result['neg_prob'] > 0:
|
378 |
+
labels.append("Negative")
|
379 |
+
values.append(result['neg_prob'])
|
380 |
+
colors.append(theme.colors['neg'])
|
381 |
+
|
382 |
+
if 'neutral_prob' in result and result['neutral_prob'] > 0:
|
383 |
+
labels.append("Neutral")
|
384 |
+
values.append(result['neutral_prob'])
|
385 |
+
colors.append('#FFA500') # Orange for neutral
|
386 |
+
|
387 |
+
if 'pos_prob' in result and result['pos_prob'] > 0:
|
388 |
+
labels.append("Positive")
|
389 |
+
values.append(result['pos_prob'])
|
390 |
+
colors.append(theme.colors['pos'])
|
391 |
|
392 |
fig = go.Figure(data=[
|
393 |
+
go.Bar(
|
394 |
+
x=labels,
|
395 |
+
y=values,
|
396 |
+
marker_color=colors,
|
397 |
+
text=[f'{v:.3f}' for v in values],
|
398 |
+
textposition='auto',
|
399 |
+
)
|
400 |
])
|
401 |
|
402 |
fig.update_layout(
|
403 |
title="Sentiment Probabilities",
|
404 |
+
xaxis_title="Sentiment",
|
405 |
yaxis_title="Probability",
|
406 |
+
yaxis=dict(range=[0, 1]),
|
407 |
+
width=config.FIGURE_WIDTH,
|
408 |
+
height=config.FIGURE_HEIGHT,
|
409 |
showlegend=False
|
410 |
)
|
411 |
|
|
|
413 |
|
414 |
@staticmethod
|
415 |
@handle_errors(default_return=None)
|
416 |
+
def create_confidence_gauge(confidence: float, sentiment: str, theme: ThemeContext) -> go.Figure:
|
417 |
+
"""Create confidence gauge using Plotly"""
|
418 |
+
color = theme.colors['pos'] if sentiment == 'Positive' else theme.colors['neg'] if sentiment == 'Negative' else '#FFA500'
|
419 |
+
|
420 |
+
fig = go.Figure(go.Indicator(
|
421 |
+
mode = "gauge+number+delta",
|
422 |
+
value = confidence,
|
423 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
424 |
+
title = {'text': f"{sentiment} Confidence"},
|
425 |
+
delta = {'reference': 0.5},
|
426 |
+
gauge = {
|
427 |
+
'axis': {'range': [None, 1]},
|
428 |
+
'bar': {'color': color},
|
429 |
+
'steps': [
|
430 |
+
{'range': [0, 0.5], 'color': "lightgray"},
|
431 |
+
{'range': [0.5, 1], 'color': "gray"}
|
432 |
+
],
|
433 |
+
'threshold': {
|
434 |
+
'line': {'color': "red", 'width': 4},
|
435 |
+
'thickness': 0.75,
|
436 |
+
'value': 0.9
|
437 |
+
}
|
438 |
+
}
|
439 |
+
))
|
440 |
|
441 |
fig.update_layout(
|
442 |
+
width=config.FIGURE_WIDTH,
|
443 |
+
height=config.FIGURE_HEIGHT
|
|
|
|
|
|
|
444 |
)
|
445 |
|
446 |
return fig
|
447 |
|
448 |
@staticmethod
|
449 |
@handle_errors(default_return=None)
|
450 |
+
def create_keyword_chart(key_words: List[Tuple[str, float]], sentiment: str, theme: ThemeContext) -> Optional[go.Figure]:
|
451 |
+
"""Create horizontal bar chart for key contributing words"""
|
452 |
+
if not key_words:
|
453 |
+
return None
|
454 |
+
|
455 |
+
words = [word for word, score in key_words]
|
456 |
+
scores = [score for word, score in key_words]
|
457 |
+
|
458 |
+
# Choose color based on sentiment
|
459 |
+
color = theme.colors['pos'] if sentiment == 'Positive' else theme.colors['neg'] if sentiment == 'Negative' else '#FFA500'
|
460 |
+
|
461 |
+
fig = go.Figure(go.Bar(
|
462 |
+
x=scores,
|
463 |
+
y=words,
|
464 |
+
orientation='h',
|
465 |
+
marker_color=color,
|
466 |
+
text=[f'{score:.3f}' for score in scores],
|
467 |
+
textposition='auto',
|
468 |
+
))
|
469 |
|
470 |
fig.update_layout(
|
471 |
+
title=f'Top Contributing Words ({sentiment})',
|
472 |
+
xaxis_title='Attention Weight',
|
473 |
+
yaxis_title='Words',
|
474 |
+
width=config.FIGURE_WIDTH,
|
475 |
+
height=config.FIGURE_HEIGHT,
|
476 |
+
yaxis={'categoryorder': 'total ascending'}
|
477 |
)
|
478 |
|
479 |
return fig
|
480 |
|
481 |
@staticmethod
|
482 |
@handle_errors(default_return=None)
|
483 |
+
def create_wordcloud_plot(text: str, sentiment: str, theme: ThemeContext) -> Optional[go.Figure]:
|
484 |
+
"""Create word cloud visualization"""
|
485 |
+
if len(text.split()) < 3:
|
486 |
+
return None
|
|
|
|
|
487 |
|
488 |
+
try:
|
489 |
+
colormap = 'Greens' if sentiment == 'Positive' else 'Reds' if sentiment == 'Negative' else 'Blues'
|
490 |
+
wc = WordCloud(
|
491 |
+
width=config.WORDCLOUD_SIZE[0],
|
492 |
+
height=config.WORDCLOUD_SIZE[1],
|
493 |
+
background_color='white',
|
494 |
+
colormap=colormap,
|
495 |
+
max_words=30
|
496 |
+
).generate(text)
|
497 |
+
|
498 |
+
# Convert to image
|
499 |
+
img_array = wc.to_array()
|
500 |
+
|
501 |
+
fig = go.Figure()
|
502 |
+
fig.add_trace(go.Image(z=img_array))
|
503 |
+
fig.update_layout(
|
504 |
+
title=f'{sentiment} Word Cloud',
|
505 |
+
xaxis={'visible': False},
|
506 |
+
yaxis={'visible': False},
|
507 |
+
width=config.FIGURE_WIDTH,
|
508 |
+
height=config.FIGURE_HEIGHT,
|
509 |
+
margin=dict(l=0, r=0, t=30, b=0)
|
510 |
+
)
|
511 |
+
|
512 |
+
return fig
|
513 |
+
|
514 |
+
except Exception as e:
|
515 |
+
logger.error(f"Word cloud generation failed: {e}")
|
516 |
+
return None
|
517 |
|
518 |
@staticmethod
|
519 |
@handle_errors(default_return=None)
|
520 |
+
def create_batch_analysis(results: List[Dict], theme: ThemeContext) -> go.Figure:
|
521 |
+
"""Create comprehensive batch visualization using Plotly subplots"""
|
|
|
|
|
|
|
|
|
522 |
fig = make_subplots(
|
523 |
rows=2, cols=2,
|
524 |
+
subplot_titles=['Sentiment Distribution', 'Confidence Distribution',
|
525 |
+
'Sentiment Progression', 'Language Distribution'],
|
526 |
+
specs=[[{"type": "pie"}, {"type": "histogram"}],
|
527 |
+
[{"type": "scatter", "colspan": 2}, None]]
|
528 |
)
|
529 |
|
530 |
+
# Sentiment distribution (pie chart)
|
531 |
+
sent_counts = Counter([r['sentiment'] for r in results])
|
532 |
+
colors_pie = [theme.colors['pos'] if s == 'Positive' else theme.colors['neg'] if s == 'Negative' else '#FFA500' for s in sent_counts.keys()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
533 |
|
534 |
fig.add_trace(
|
535 |
+
go.Pie(labels=list(sent_counts.keys()), values=list(sent_counts.values()),
|
536 |
+
marker_colors=colors_pie, name="Sentiment"),
|
|
|
537 |
row=1, col=1
|
538 |
)
|
539 |
|
540 |
+
# Confidence histogram
|
541 |
+
confs = [r['confidence'] for r in results]
|
542 |
fig.add_trace(
|
543 |
+
go.Histogram(x=confs, nbinsx=8, marker_color='skyblue', name="Confidence"),
|
544 |
row=1, col=2
|
545 |
)
|
546 |
|
547 |
+
# Sentiment progression
|
548 |
+
pos_probs = [r.get('pos_prob', 0) for r in results]
|
549 |
+
indices = list(range(len(results)))
|
550 |
+
colors_scatter = [theme.colors['pos'] if r['sentiment'] == 'Positive'
|
551 |
+
else theme.colors['neg'] if r['sentiment'] == 'Negative'
|
552 |
+
else '#FFA500' for r in results]
|
553 |
+
|
554 |
fig.add_trace(
|
555 |
+
go.Scatter(x=indices, y=pos_probs, mode='markers',
|
556 |
+
marker=dict(color=colors_scatter, size=8),
|
557 |
+
name="Sentiment Progression"),
|
558 |
row=2, col=1
|
559 |
)
|
560 |
|
561 |
+
# Add horizontal line at 0.5
|
562 |
+
fig.add_hline(y=0.5, line_dash="dash", line_color="gray", row=2, col=1)
|
563 |
+
|
564 |
+
fig.update_layout(
|
565 |
+
height=800,
|
566 |
+
width=1000,
|
567 |
+
showlegend=False,
|
568 |
+
title_text="Batch Analysis Results"
|
569 |
)
|
570 |
|
|
|
571 |
return fig
|
572 |
|
573 |
+
# Unified Data Handler (unchanged)
|
574 |
class DataHandler:
|
575 |
+
"""Handles all data operations"""
|
576 |
|
577 |
@staticmethod
|
578 |
@handle_errors(default_return=(None, "Export failed"))
|
579 |
def export_data(data: List[Dict], format_type: str) -> Tuple[Optional[str], str]:
|
580 |
+
"""Universal data export"""
|
581 |
if not data:
|
582 |
return None, "No data to export"
|
583 |
|
|
|
586 |
|
587 |
if format_type == 'csv':
|
588 |
writer = csv.writer(temp_file)
|
589 |
+
writer.writerow(['Timestamp', 'Text', 'Sentiment', 'Confidence', 'Pos_Prob', 'Neg_Prob', 'Neutral_Prob', 'Language', 'Key_Words'])
|
|
|
590 |
for entry in data:
|
|
|
591 |
writer.writerow([
|
592 |
entry.get('timestamp', ''),
|
593 |
entry.get('text', ''),
|
594 |
entry.get('sentiment', ''),
|
595 |
f"{entry.get('confidence', 0):.4f}",
|
|
|
596 |
f"{entry.get('pos_prob', 0):.4f}",
|
597 |
f"{entry.get('neg_prob', 0):.4f}",
|
598 |
+
f"{entry.get('neutral_prob', 0):.4f}",
|
599 |
+
entry.get('language', ''),
|
600 |
+
"|".join([f"{word}:{score:.3f}" for word, score in entry.get('key_words', [])])
|
601 |
])
|
602 |
elif format_type == 'json':
|
603 |
json.dump(data, temp_file, indent=2, ensure_ascii=False)
|
|
|
608 |
@staticmethod
|
609 |
@handle_errors(default_return="")
|
610 |
def process_file(file) -> str:
|
611 |
+
"""Process uploaded file"""
|
612 |
if not file:
|
613 |
return ""
|
614 |
+
|
615 |
content = file.read().decode('utf-8')
|
616 |
|
617 |
if file.name.endswith('.csv'):
|
618 |
+
import io
|
619 |
csv_file = io.StringIO(content)
|
620 |
reader = csv.reader(csv_file)
|
621 |
try:
|
622 |
+
next(reader)
|
623 |
texts = []
|
624 |
for row in reader:
|
625 |
if row and row[0].strip():
|
626 |
text = row[0].strip().strip('"')
|
627 |
+
if text:
|
628 |
texts.append(text)
|
629 |
return '\n'.join(texts)
|
630 |
+
except Exception as e:
|
631 |
+
lines = content.strip().split('\n')[1:]
|
632 |
texts = []
|
633 |
for line in lines:
|
634 |
if line.strip():
|
|
|
636 |
if text:
|
637 |
texts.append(text)
|
638 |
return '\n'.join(texts)
|
|
|
639 |
return content
|
640 |
|
641 |
+
# Main Application with Multi-language Support
|
642 |
class SentimentApp:
|
643 |
+
"""Main application orchestrator with multi-language support"""
|
644 |
|
645 |
def __init__(self):
|
646 |
self.engine = SentimentEngine()
|
|
|
647 |
self.history = HistoryManager()
|
648 |
self.data_handler = DataHandler()
|
649 |
|
650 |
# Multi-language examples
|
651 |
self.examples = [
|
652 |
+
["While the film's visual effects were undeniably impressive, the story lacked emotional weight, and the pacing felt inconsistent throughout."],
|
653 |
+
["这部电影的视觉效果令人印象深刻,但故事缺乏情感深度,节奏感也不够连贯。"],
|
654 |
+
["Aunque los efectos visuales de la película fueron innegablemente impresionantes, la historia carecía de peso emocional."],
|
655 |
+
["Bien que les effets visuels du film soient indéniablement impressionnants, l'histoire manquait de poids émotionnel."],
|
656 |
+
["An extraordinary achievement in filmmaking — the direction was masterful, the script was sharp, and every performance added depth and realism."]
|
657 |
]
|
658 |
|
659 |
+
@handle_errors(default_return=("Please enter text", None, None, None, None))
|
660 |
+
def analyze_single(self, text: str, model_key: str = 'multilingual', theme: str = 'default'):
|
661 |
+
"""Single text analysis with multi-language support"""
|
|
|
662 |
if not text.strip():
|
663 |
+
return "Please enter text", None, None, None, None
|
664 |
|
665 |
+
result = self.engine.analyze_single(text, model_key)
|
|
|
|
|
666 |
|
667 |
+
# Add to history
|
668 |
+
self.history.add({
|
669 |
+
'text': text[:100],
|
670 |
+
'full_text': text,
|
671 |
+
**result
|
672 |
+
})
|
673 |
|
674 |
+
# Create visualizations
|
675 |
+
theme_ctx = ThemeContext(theme)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
676 |
|
677 |
+
prob_plot = PlotFactory.create_sentiment_bars(result, theme_ctx)
|
678 |
+
gauge_plot = PlotFactory.create_confidence_gauge(result['confidence'], result['sentiment'], theme_ctx)
|
679 |
+
cloud_plot = PlotFactory.create_wordcloud_plot(text, result['sentiment'], theme_ctx)
|
680 |
+
keyword_plot = PlotFactory.create_keyword_chart(result['key_words'], result['sentiment'], theme_ctx)
|
681 |
|
682 |
+
# Format result text with key words
|
683 |
+
key_words_str = ", ".join([f"{word}({score:.3f})" for word, score in result['key_words'][:5]])
|
684 |
+
result_text = (f"Sentiment: {result['sentiment']} (Confidence: {result['confidence']:.3f})\n"
|
685 |
+
f"Language: {result['language']}\n"
|
686 |
+
f"Key Words: {key_words_str}")
|
687 |
|
688 |
+
return result_text, prob_plot, gauge_plot, cloud_plot, keyword_plot
|
689 |
+
|
690 |
+
@handle_errors(default_return=None)
|
691 |
+
def analyze_batch(self, reviews: str, model_key: str = 'multilingual', progress=None):
|
692 |
+
"""Batch analysis with multi-language support"""
|
693 |
+
if not reviews.strip():
|
694 |
+
return None
|
695 |
|
696 |
+
texts = [r.strip() for r in reviews.split('\n') if r.strip()]
|
697 |
+
if len(texts) < 2:
|
698 |
+
return None
|
699 |
|
700 |
+
results = self.engine.analyze_batch(texts, model_key, progress)
|
|
|
|
|
|
|
|
|
701 |
|
702 |
+
# Add to history
|
703 |
+
for result in results:
|
704 |
+
self.history.add(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
705 |
|
706 |
+
# Create visualization
|
707 |
+
theme_ctx = ThemeContext('default')
|
708 |
+
return PlotFactory.create_batch_analysis(results, theme_ctx)
|
709 |
|
710 |
@handle_errors(default_return=(None, "No history available"))
|
711 |
def plot_history(self, theme: str = 'default'):
|
712 |
+
"""Plot analysis history using Plotly"""
|
713 |
history = self.history.get_all()
|
714 |
if len(history) < 2:
|
715 |
return None, f"Need at least 2 analyses for trends. Current: {len(history)}"
|
716 |
|
717 |
theme_ctx = ThemeContext(theme)
|
718 |
|
719 |
+
# Create subplots
|
720 |
+
fig = make_subplots(
|
721 |
+
rows=2, cols=1,
|
722 |
+
subplot_titles=['Sentiment History', 'Confidence Over Time'],
|
723 |
+
vertical_spacing=0.12
|
724 |
+
)
|
725 |
+
|
726 |
+
indices = list(range(len(history)))
|
727 |
+
pos_probs = [item.get('pos_prob', 0) for item in history]
|
728 |
+
confs = [item['confidence'] for item in history]
|
729 |
+
|
730 |
+
# Sentiment trend
|
731 |
+
colors = [theme_ctx.colors['pos'] if p > 0.5 else theme_ctx.colors['neg'] for p in pos_probs]
|
732 |
+
|
733 |
+
fig.add_trace(
|
734 |
+
go.Scatter(
|
735 |
+
x=indices,
|
736 |
+
y=pos_probs,
|
737 |
+
mode='markers+lines',
|
738 |
+
marker=dict(color=colors, size=8),
|
739 |
+
line=dict(color='gray', width=2),
|
740 |
+
name='Sentiment Trend'
|
741 |
+
),
|
742 |
+
row=1, col=1
|
743 |
+
)
|
744 |
+
|
745 |
+
# Add horizontal line at 0.5
|
746 |
+
fig.add_hline(y=0.5, line_dash="dash", line_color="gray", row=1, col=1)
|
747 |
+
|
748 |
+
# Confidence trend
|
749 |
+
fig.add_trace(
|
750 |
+
go.Bar(
|
751 |
+
x=indices,
|
752 |
+
y=confs,
|
753 |
+
marker_color='lightblue',
|
754 |
+
marker_line_color='navy',
|
755 |
+
marker_line_width=1,
|
756 |
+
name='Confidence'
|
757 |
+
),
|
758 |
+
row=2, col=1
|
759 |
+
)
|
760 |
+
|
761 |
+
fig.update_layout(
|
762 |
+
height=800,
|
763 |
+
width=1000,
|
764 |
+
showlegend=False,
|
765 |
+
title_text="Analysis History"
|
766 |
+
)
|
767 |
+
|
768 |
+
fig.update_xaxes(title_text="Analysis Number", row=2, col=1)
|
769 |
+
fig.update_yaxes(title_text="Positive Probability", row=1, col=1)
|
770 |
+
fig.update_yaxes(title_text="Confidence", row=2, col=1)
|
771 |
+
|
772 |
+
return fig, f"History: {len(history)} analyses"
|
773 |
|
774 |
+
# Gradio Interface Setup with Multi-language Support
|
775 |
def create_interface():
|
776 |
+
"""Create streamlined Gradio interface with multi-language support"""
|
777 |
app = SentimentApp()
|
778 |
|
779 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Multi-language Sentiment Analyzer") as demo:
|
780 |
+
gr.Markdown("# 🌍 AI Multi-language Sentiment Analyzer")
|
781 |
+
gr.Markdown("Advanced sentiment analysis supporting multiple languages with Plotly visualizations and key word extraction")
|
782 |
|
783 |
with gr.Tab("Single Analysis"):
|
784 |
with gr.Row():
|
785 |
with gr.Column():
|
786 |
text_input = gr.Textbox(
|
787 |
+
label="Review Text (Multiple Languages Supported)",
|
788 |
+
placeholder="Enter your review in any supported language...",
|
789 |
lines=5
|
790 |
)
|
|
|
791 |
with gr.Row():
|
792 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
793 |
+
model_selector = gr.Dropdown(
|
794 |
+
choices=[
|
795 |
+
('Auto-detect', 'multilingual'),
|
796 |
+
('Multilingual', 'multilingual'),
|
797 |
+
('English', 'english'),
|
798 |
+
('Chinese 中文', 'chinese'),
|
799 |
+
('Spanish Español', 'spanish'),
|
800 |
+
('French Français', 'french')
|
801 |
+
],
|
802 |
+
value="multilingual",
|
803 |
+
label="Language Model"
|
804 |
)
|
805 |
theme_selector = gr.Dropdown(
|
806 |
choices=list(config.THEMES.keys()),
|
|
|
808 |
label="Theme"
|
809 |
)
|
810 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
811 |
gr.Examples(
|
812 |
examples=app.examples,
|
813 |
inputs=text_input,
|
814 |
+
label="Multi-language Examples"
|
815 |
)
|
816 |
|
817 |
with gr.Column():
|
818 |
+
result_output = gr.Textbox(label="Analysis Result", lines=4)
|
819 |
|
820 |
with gr.Row():
|
821 |
+
prob_plot = gr.Plot(label="Sentiment Probabilities")
|
822 |
+
gauge_plot = gr.Plot(label="Confidence Gauge")
|
823 |
|
824 |
with gr.Row():
|
825 |
+
wordcloud_plot = gr.Plot(label="Word Cloud")
|
826 |
+
keyword_plot = gr.Plot(label="Key Contributing Words")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
827 |
|
828 |
with gr.Tab("Batch Analysis"):
|
829 |
with gr.Row():
|
830 |
with gr.Column():
|
831 |
+
file_upload = gr.File(label="Upload File", file_types=[".csv", ".txt"])
|
|
|
|
|
|
|
832 |
batch_input = gr.Textbox(
|
833 |
+
label="Reviews (one per line, mixed languages supported)",
|
834 |
+
lines=8,
|
835 |
+
placeholder="Enter multiple reviews, one per line...\nSupports mixed languages in the same batch!"
|
836 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
837 |
|
838 |
with gr.Column():
|
839 |
+
load_btn = gr.Button("Load File")
|
840 |
+
with gr.Row():
|
841 |
+
batch_btn = gr.Button("Analyze Batch", variant="primary")
|
842 |
+
batch_model_selector = gr.Dropdown(
|
843 |
+
choices=[
|
844 |
+
('Auto-detect', 'multilingual'),
|
845 |
+
('Multilingual', 'multilingual'),
|
846 |
+
('English', 'english'),
|
847 |
+
('Chinese 中文', 'chinese'),
|
848 |
+
('Spanish Español', 'spanish'),
|
849 |
+
('French Français', 'french')
|
850 |
+
],
|
851 |
+
value="multilingual",
|
852 |
+
label="Batch Model"
|
853 |
+
)
|
854 |
|
855 |
+
batch_plot = gr.Plot(label="Batch Analysis Results")
|
|
|
|
|
856 |
|
857 |
+
with gr.Tab("History & Export"):
|
858 |
with gr.Row():
|
859 |
+
refresh_btn = gr.Button("Refresh History")
|
860 |
+
clear_btn = gr.Button("Clear History", variant="stop")
|
861 |
+
status_btn = gr.Button("Show Status")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
862 |
|
863 |
with gr.Row():
|
864 |
+
csv_btn = gr.Button("Export CSV")
|
865 |
+
json_btn = gr.Button("Export JSON")
|
866 |
+
|
867 |
+
history_status = gr.Textbox(label="Status Information")
|
868 |
+
history_plot = gr.Plot(label="History Trends")
|
869 |
+
csv_file = gr.File(label="CSV Download", visible=True)
|
870 |
+
json_file = gr.File(label="JSON Download", visible=True)
|
871 |
+
|
872 |
+
with gr.Tab("Model Information"):
|
873 |
+
gr.Markdown("""
|
874 |
+
## Supported Languages and Models
|
875 |
+
|
876 |
+
| Language | Model | Description |
|
877 |
+
|----------|-------|-------------|
|
878 |
+
| **Multilingual** | XLM-RoBERTa | Supports 100+ languages automatically |
|
879 |
+
| **English** | RoBERTa-base | Optimized for English text |
|
880 |
+
| **Chinese 中文** | RoBERTa-Chinese | Specialized for Chinese language |
|
881 |
+
| **Spanish Español** | BETO | Fine-tuned for Spanish sentiment |
|
882 |
+
| **French Français** | tf-allocine | Trained on French movie reviews |
|
883 |
+
|
884 |
+
### Features:
|
885 |
+
- **Automatic Language Detection**: The system can automatically detect the input language
|
886 |
+
- **Attention-based Keywords**: Extract words that contribute most to sentiment prediction
|
887 |
+
- **Interactive Visualizations**: Plotly-powered charts and graphs
|
888 |
+
- **Batch Processing**: Analyze multiple texts at once
|
889 |
+
- **Export Capabilities**: Save results in CSV or JSON format
|
890 |
+
- **Multi-language Support**: Mix different languages in batch analysis
|
891 |
+
""")
|
892 |
+
|
893 |
+
# Event bindings
|
894 |
analyze_btn.click(
|
895 |
app.analyze_single,
|
896 |
+
inputs=[text_input, model_selector, theme_selector],
|
897 |
+
outputs=[result_output, prob_plot, gauge_plot, wordcloud_plot, keyword_plot]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
898 |
)
|
899 |
|
900 |
+
load_btn.click(
|
901 |
+
app.data_handler.process_file,
|
902 |
+
inputs=file_upload,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
903 |
outputs=batch_input
|
904 |
)
|
905 |
|
906 |
+
batch_btn.click(
|
907 |
+
app.analyze_batch,
|
908 |
+
inputs=[batch_input, batch_model_selector],
|
909 |
+
outputs=batch_plot
|
|
|
910 |
)
|
911 |
|
912 |
+
refresh_btn.click(
|
913 |
+
lambda theme: app.plot_history(theme),
|
914 |
+
inputs=theme_selector,
|
915 |
+
outputs=[history_plot, history_status]
|
|
|
916 |
)
|
917 |
|
918 |
+
clear_btn.click(
|
919 |
lambda: f"Cleared {app.history.clear()} entries",
|
920 |
outputs=history_status
|
921 |
)
|
922 |
|
923 |
status_btn.click(
|
924 |
+
lambda: f"History: {app.history.size()} entries | Available Models: {', '.join(config.MODELS.keys())}",
|
925 |
outputs=history_status
|
926 |
)
|
927 |
|
928 |
+
csv_btn.click(
|
929 |
lambda: app.data_handler.export_data(app.history.get_all(), 'csv'),
|
930 |
+
outputs=[csv_file, history_status]
|
931 |
)
|
932 |
|
933 |
+
json_btn.click(
|
934 |
lambda: app.data_handler.export_data(app.history.get_all(), 'json'),
|
935 |
+
outputs=[json_file, history_status]
|
936 |
)
|
937 |
|
938 |
return demo
|
939 |
|
940 |
# Application Entry Point
|
941 |
if __name__ == "__main__":
|
942 |
+
logging.basicConfig(level=logging.INFO)
|
943 |
+
demo = create_interface()
|
944 |
+
demo.launch(
|
945 |
+
share=True,
|
946 |
+
server_name="0.0.0.0",
|
947 |
+
server_port=7860,
|
948 |
+
show_error=True
|
949 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|