Update app.py
Browse files
app.py
CHANGED
@@ -1,1539 +1,727 @@
|
|
1 |
-
import torch
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
import plotly.graph_objects as go
|
5 |
-
import plotly.express as px
|
6 |
-
from plotly.subplots import make_subplots
|
7 |
import numpy as np
|
8 |
-
from wordcloud import WordCloud
|
9 |
-
from collections import Counter, defaultdict, OrderedDict
|
10 |
-
import re
|
11 |
import json
|
12 |
-
import
|
13 |
import io
|
14 |
-
import tempfile
|
15 |
from datetime import datetime
|
16 |
-
import
|
17 |
-
from
|
18 |
-
|
19 |
-
from
|
20 |
-
|
21 |
-
import
|
22 |
-
from nltk.corpus import stopwords
|
23 |
-
import langdetect
|
24 |
-
import pandas as pd
|
25 |
-
import gc
|
26 |
-
import threading
|
27 |
-
import asyncio
|
28 |
-
from concurrent.futures import ThreadPoolExecutor
|
29 |
import time
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
-
from lime.lime_text import LimeTextExplainer
|
35 |
|
36 |
-
|
37 |
-
@dataclass
|
38 |
-
class Config:
|
39 |
-
MAX_HISTORY_SIZE: int = 1000
|
40 |
-
BATCH_SIZE_LIMIT: int = 50
|
41 |
-
MAX_TEXT_LENGTH: int = 512
|
42 |
-
MIN_WORD_LENGTH: int = 2
|
43 |
-
CACHE_SIZE: int = 128
|
44 |
-
BATCH_PROCESSING_SIZE: int = 8
|
45 |
-
MODEL_CACHE_SIZE: int = 2 # Maximum models to keep in memory
|
46 |
-
|
47 |
-
# Supported languages and models
|
48 |
-
SUPPORTED_LANGUAGES = {
|
49 |
-
'auto': 'Auto Detect',
|
50 |
-
'en': 'English',
|
51 |
-
'zh': 'Chinese',
|
52 |
-
'es': 'Spanish',
|
53 |
-
'fr': 'French',
|
54 |
-
'de': 'German',
|
55 |
-
'sv': 'Swedish'
|
56 |
-
}
|
57 |
-
|
58 |
-
MODELS = {
|
59 |
-
'en': "cardiffnlp/twitter-roberta-base-sentiment-latest",
|
60 |
-
'multilingual': "cardiffnlp/twitter-xlm-roberta-base-sentiment",
|
61 |
-
'zh': "uer/roberta-base-finetuned-dianping-chinese"
|
62 |
-
}
|
63 |
-
|
64 |
-
# Color themes for Plotly
|
65 |
-
THEMES = {
|
66 |
-
'default': {'pos': '#4CAF50', 'neg': '#F44336', 'neu': '#FF9800'},
|
67 |
-
'ocean': {'pos': '#0077BE', 'neg': '#FF6B35', 'neu': '#00BCD4'},
|
68 |
-
'dark': {'pos': '#66BB6A', 'neg': '#EF5350', 'neu': '#FFA726'},
|
69 |
-
'rainbow': {'pos': '#9C27B0', 'neg': '#E91E63', 'neu': '#FF5722'}
|
70 |
-
}
|
71 |
-
|
72 |
-
config = Config()
|
73 |
-
|
74 |
-
# Logging setup
|
75 |
-
logging.basicConfig(level=logging.INFO)
|
76 |
-
logger = logging.getLogger(__name__)
|
77 |
-
|
78 |
-
# Initialize NLTK
|
79 |
-
try:
|
80 |
-
nltk.download('stopwords', quiet=True)
|
81 |
-
nltk.download('punkt', quiet=True)
|
82 |
-
STOP_WORDS = set(stopwords.words('english'))
|
83 |
-
except:
|
84 |
-
STOP_WORDS = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}
|
85 |
-
|
86 |
-
# Decorators and Context Managers
|
87 |
-
def handle_errors(default_return=None):
|
88 |
-
"""Centralized error handling decorator"""
|
89 |
-
def decorator(func: Callable) -> Callable:
|
90 |
-
@wraps(func)
|
91 |
-
def wrapper(*args, **kwargs):
|
92 |
-
try:
|
93 |
-
return func(*args, **kwargs)
|
94 |
-
except Exception as e:
|
95 |
-
logger.error(f"{func.__name__} failed: {e}")
|
96 |
-
return default_return if default_return is not None else f"Error: {str(e)}"
|
97 |
-
return wrapper
|
98 |
-
return decorator
|
99 |
-
|
100 |
-
@contextmanager
|
101 |
-
def memory_cleanup():
|
102 |
-
"""Context manager for memory cleanup"""
|
103 |
-
try:
|
104 |
-
yield
|
105 |
-
finally:
|
106 |
-
gc.collect()
|
107 |
-
if torch.cuda.is_available():
|
108 |
-
torch.cuda.empty_cache()
|
109 |
-
|
110 |
-
class ThemeContext:
|
111 |
-
"""Theme management context"""
|
112 |
-
def __init__(self, theme: str = 'default'):
|
113 |
-
self.theme = theme
|
114 |
-
self.colors = config.THEMES.get(theme, config.THEMES['default'])
|
115 |
-
|
116 |
-
class LRUModelCache:
|
117 |
-
"""LRU Cache for models with memory management"""
|
118 |
-
def __init__(self, max_size: int = 2):
|
119 |
-
self.max_size = max_size
|
120 |
-
self.cache = OrderedDict()
|
121 |
-
self.lock = threading.Lock()
|
122 |
-
|
123 |
-
def get(self, key):
|
124 |
-
with self.lock:
|
125 |
-
if key in self.cache:
|
126 |
-
# Move to end (most recently used)
|
127 |
-
self.cache.move_to_end(key)
|
128 |
-
return self.cache[key]
|
129 |
-
return None
|
130 |
-
|
131 |
-
def put(self, key, value):
|
132 |
-
with self.lock:
|
133 |
-
if key in self.cache:
|
134 |
-
self.cache.move_to_end(key)
|
135 |
-
else:
|
136 |
-
if len(self.cache) >= self.max_size:
|
137 |
-
# Remove least recently used
|
138 |
-
oldest_key = next(iter(self.cache))
|
139 |
-
old_model, old_tokenizer = self.cache.pop(oldest_key)
|
140 |
-
# Force cleanup
|
141 |
-
del old_model, old_tokenizer
|
142 |
-
gc.collect()
|
143 |
-
if torch.cuda.is_available():
|
144 |
-
torch.cuda.empty_cache()
|
145 |
-
|
146 |
-
self.cache[key] = value
|
147 |
-
|
148 |
-
def clear(self):
|
149 |
-
with self.lock:
|
150 |
-
for model, tokenizer in self.cache.values():
|
151 |
-
del model, tokenizer
|
152 |
-
self.cache.clear()
|
153 |
-
gc.collect()
|
154 |
-
if torch.cuda.is_available():
|
155 |
-
torch.cuda.empty_cache()
|
156 |
-
|
157 |
-
# Enhanced Model Manager with Optimized Memory Management
|
158 |
-
class ModelManager:
|
159 |
-
"""Optimized multi-language model manager with LRU cache and lazy loading"""
|
160 |
-
_instance = None
|
161 |
-
|
162 |
-
def __new__(cls):
|
163 |
-
if cls._instance is None:
|
164 |
-
cls._instance = super().__new__(cls)
|
165 |
-
cls._instance._initialized = False
|
166 |
-
return cls._instance
|
167 |
-
|
168 |
def __init__(self):
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
# Load with memory optimization
|
182 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
183 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
184 |
-
model_name,
|
185 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
186 |
-
device_map="auto" if torch.cuda.is_available() else None
|
187 |
)
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
'zh-cn': 'zh',
|
236 |
-
'zh-tw': 'zh'
|
237 |
-
}
|
238 |
-
detected = language_mapping.get(detected, detected)
|
239 |
-
return detected if detected in config.SUPPORTED_LANGUAGES else 'en'
|
240 |
-
except:
|
241 |
-
return 'en'
|
242 |
-
|
243 |
-
# Simplified Text Processing
|
244 |
-
class TextProcessor:
|
245 |
-
"""Optimized text processing with multi-language support"""
|
246 |
-
|
247 |
-
@staticmethod
|
248 |
-
@lru_cache(maxsize=config.CACHE_SIZE)
|
249 |
-
def clean_text(text: str, remove_punctuation: bool = True, remove_numbers: bool = False) -> str:
|
250 |
-
"""Clean text with language awareness"""
|
251 |
-
text = text.strip()
|
252 |
-
|
253 |
-
# Don't clean Chinese text aggressively
|
254 |
-
if re.search(r'[\u4e00-\u9fff]', text):
|
255 |
-
return text
|
256 |
-
|
257 |
-
text = text.lower()
|
258 |
-
|
259 |
-
if remove_numbers:
|
260 |
-
text = re.sub(r'\d+', '', text)
|
261 |
-
|
262 |
-
if remove_punctuation:
|
263 |
-
text = re.sub(r'[^\w\s]', '', text)
|
264 |
-
|
265 |
-
words = text.split()
|
266 |
-
cleaned_words = [w for w in words if w not in STOP_WORDS and len(w) >= config.MIN_WORD_LENGTH]
|
267 |
-
return ' '.join(cleaned_words)
|
268 |
-
|
269 |
-
@staticmethod
|
270 |
-
def parse_batch_input(text: str) -> List[str]:
|
271 |
-
"""Parse batch input from textarea"""
|
272 |
-
lines = text.strip().split('\n')
|
273 |
-
return [line.strip() for line in lines if line.strip()]
|
274 |
-
|
275 |
-
# Enhanced History Manager
|
276 |
-
class HistoryManager:
|
277 |
-
"""Enhanced history management with filtering"""
|
278 |
-
def __init__(self):
|
279 |
-
self._history = []
|
280 |
-
|
281 |
-
def add(self, entry: Dict):
|
282 |
-
"""Add entry with timestamp"""
|
283 |
-
entry['timestamp'] = datetime.now().isoformat()
|
284 |
-
self._history.append(entry)
|
285 |
-
if len(self._history) > config.MAX_HISTORY_SIZE:
|
286 |
-
self._history = self._history[-config.MAX_HISTORY_SIZE:]
|
287 |
-
|
288 |
-
def add_batch(self, entries: List[Dict]):
|
289 |
-
"""Add multiple entries"""
|
290 |
-
for entry in entries:
|
291 |
-
self.add(entry)
|
292 |
-
|
293 |
-
def get_all(self) -> List[Dict]:
|
294 |
-
return self._history.copy()
|
295 |
-
|
296 |
-
def get_recent(self, n: int = 10) -> List[Dict]:
|
297 |
-
return self._history[-n:] if self._history else []
|
298 |
-
|
299 |
-
def filter_by(self, sentiment: str = None, language: str = None,
|
300 |
-
min_confidence: float = None) -> List[Dict]:
|
301 |
-
"""Filter history by criteria"""
|
302 |
-
filtered = self._history
|
303 |
-
|
304 |
-
if sentiment:
|
305 |
-
filtered = [h for h in filtered if h['sentiment'] == sentiment]
|
306 |
-
if language:
|
307 |
-
filtered = [h for h in filtered if h.get('language', 'en') == language]
|
308 |
-
if min_confidence:
|
309 |
-
filtered = [h for h in filtered if h['confidence'] >= min_confidence]
|
310 |
-
|
311 |
-
return filtered
|
312 |
-
|
313 |
-
def clear(self) -> int:
|
314 |
-
count = len(self._history)
|
315 |
-
self._history.clear()
|
316 |
-
return count
|
317 |
-
|
318 |
-
def size(self) -> int:
|
319 |
-
return len(self._history)
|
320 |
-
|
321 |
-
def get_stats(self) -> Dict:
|
322 |
-
"""Get comprehensive statistics"""
|
323 |
-
if not self._history:
|
324 |
-
return {}
|
325 |
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
|
330 |
return {
|
331 |
-
'
|
332 |
-
'
|
333 |
-
'
|
334 |
-
'
|
335 |
-
|
336 |
-
|
337 |
-
'min_confidence': np.min(confidences),
|
338 |
-
'languages_detected': len(set(languages)),
|
339 |
-
'most_common_language': Counter(languages).most_common(1)[0][0] if languages else 'en'
|
340 |
-
}
|
341 |
-
|
342 |
-
# Core Sentiment Analysis Engine with Performance Optimizations
|
343 |
-
class SentimentEngine:
|
344 |
-
"""Optimized multi-language sentiment analysis engine"""
|
345 |
-
|
346 |
-
def __init__(self):
|
347 |
-
self.model_manager = ModelManager()
|
348 |
-
self.executor = ThreadPoolExecutor(max_workers=4)
|
349 |
-
|
350 |
-
@handle_errors(default_return={'sentiment': 'Unknown', 'confidence': 0.0})
|
351 |
-
def analyze_single(self, text: str, language: str = 'auto', preprocessing_options: Dict = None) -> Dict:
|
352 |
-
"""Optimized single text analysis"""
|
353 |
-
if not text.strip():
|
354 |
-
raise ValueError("Empty text provided")
|
355 |
-
|
356 |
-
# Detect language
|
357 |
-
if language == 'auto':
|
358 |
-
detected_lang = self.model_manager.detect_language(text)
|
359 |
-
else:
|
360 |
-
detected_lang = language
|
361 |
-
|
362 |
-
# Get appropriate model
|
363 |
-
model, tokenizer = self.model_manager.get_model(detected_lang)
|
364 |
-
|
365 |
-
# Preprocessing
|
366 |
-
options = preprocessing_options or {}
|
367 |
-
processed_text = text
|
368 |
-
if options.get('clean_text', False) and not re.search(r'[\u4e00-\u9fff]', text):
|
369 |
-
processed_text = TextProcessor.clean_text(
|
370 |
-
text,
|
371 |
-
options.get('remove_punctuation', True),
|
372 |
-
options.get('remove_numbers', False)
|
373 |
-
)
|
374 |
-
|
375 |
-
# Tokenize and analyze with memory optimization
|
376 |
-
inputs = tokenizer(processed_text, return_tensors="pt", padding=True,
|
377 |
-
truncation=True, max_length=config.MAX_TEXT_LENGTH).to(self.model_manager.device)
|
378 |
-
|
379 |
-
# Use no_grad for inference to save memory
|
380 |
-
with torch.no_grad():
|
381 |
-
outputs = model(**inputs)
|
382 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
|
383 |
-
|
384 |
-
# Clear GPU cache after inference
|
385 |
-
if torch.cuda.is_available():
|
386 |
-
torch.cuda.empty_cache()
|
387 |
-
|
388 |
-
# Handle different model outputs
|
389 |
-
if len(probs) == 3: # negative, neutral, positive
|
390 |
-
sentiment_idx = np.argmax(probs)
|
391 |
-
sentiment_labels = ['Negative', 'Neutral', 'Positive']
|
392 |
-
sentiment = sentiment_labels[sentiment_idx]
|
393 |
-
confidence = float(probs[sentiment_idx])
|
394 |
-
|
395 |
-
result = {
|
396 |
-
'sentiment': sentiment,
|
397 |
-
'confidence': confidence,
|
398 |
-
'neg_prob': float(probs[0]),
|
399 |
-
'neu_prob': float(probs[1]),
|
400 |
-
'pos_prob': float(probs[2]),
|
401 |
-
'has_neutral': True
|
402 |
-
}
|
403 |
-
else: # negative, positive
|
404 |
-
pred = np.argmax(probs)
|
405 |
-
sentiment = "Positive" if pred == 1 else "Negative"
|
406 |
-
confidence = float(probs[pred])
|
407 |
-
|
408 |
-
result = {
|
409 |
-
'sentiment': sentiment,
|
410 |
-
'confidence': confidence,
|
411 |
-
'neg_prob': float(probs[0]),
|
412 |
-
'pos_prob': float(probs[1]),
|
413 |
-
'neu_prob': 0.0,
|
414 |
-
'has_neutral': False
|
415 |
-
}
|
416 |
-
|
417 |
-
# Add metadata
|
418 |
-
result.update({
|
419 |
-
'language': detected_lang,
|
420 |
-
'word_count': len(text.split()),
|
421 |
-
'char_count': len(text)
|
422 |
-
})
|
423 |
-
|
424 |
-
return result
|
425 |
-
|
426 |
-
def _analyze_text_batch(self, text: str, language: str, preprocessing_options: Dict, index: int) -> Dict:
|
427 |
-
"""Single text analysis for batch processing"""
|
428 |
-
try:
|
429 |
-
result = self.analyze_single(text, language, preprocessing_options)
|
430 |
-
result['batch_index'] = index
|
431 |
-
result['text'] = text[:100] + '...' if len(text) > 100 else text
|
432 |
-
result['full_text'] = text
|
433 |
-
return result
|
434 |
-
except Exception as e:
|
435 |
-
return {
|
436 |
-
'sentiment': 'Error',
|
437 |
-
'confidence': 0.0,
|
438 |
-
'error': str(e),
|
439 |
-
'batch_index': index,
|
440 |
-
'text': text[:100] + '...' if len(text) > 100 else text,
|
441 |
-
'full_text': text
|
442 |
}
|
|
|
443 |
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
if len(texts) > config.BATCH_SIZE_LIMIT:
|
449 |
-
texts = texts[:config.BATCH_SIZE_LIMIT]
|
450 |
-
|
451 |
-
if not texts:
|
452 |
-
return []
|
453 |
-
|
454 |
-
# Pre-load model to avoid race conditions
|
455 |
-
self.model_manager.get_model(language if language != 'auto' else 'en')
|
456 |
-
|
457 |
-
# Use ThreadPoolExecutor for parallel processing
|
458 |
-
with ThreadPoolExecutor(max_workers=min(4, len(texts))) as executor:
|
459 |
-
futures = []
|
460 |
-
for i, text in enumerate(texts):
|
461 |
-
future = executor.submit(
|
462 |
-
self._analyze_text_batch,
|
463 |
-
text, language, preprocessing_options, i
|
464 |
-
)
|
465 |
-
futures.append(future)
|
466 |
-
|
467 |
-
results = []
|
468 |
-
for i, future in enumerate(futures):
|
469 |
-
if progress_callback:
|
470 |
-
progress_callback((i + 1) / len(futures))
|
471 |
-
|
472 |
-
try:
|
473 |
-
result = future.result(timeout=30) # 30 second timeout per text
|
474 |
-
results.append(result)
|
475 |
-
except Exception as e:
|
476 |
-
results.append({
|
477 |
-
'sentiment': 'Error',
|
478 |
-
'confidence': 0.0,
|
479 |
-
'error': f"Timeout or error: {str(e)}",
|
480 |
-
'batch_index': i,
|
481 |
-
'text': texts[i][:100] + '...' if len(texts[i]) > 100 else texts[i],
|
482 |
-
'full_text': texts[i]
|
483 |
-
})
|
484 |
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
"""Advanced analysis using SHAP and LIME with FIXED implementation"""
|
489 |
-
|
490 |
-
def __init__(self):
|
491 |
-
self.model_manager = ModelManager()
|
492 |
-
|
493 |
-
def create_prediction_function(self, model, tokenizer, device):
|
494 |
-
"""Create FIXED prediction function for SHAP/LIME"""
|
495 |
-
def predict_proba(texts):
|
496 |
-
# Ensure texts is a list
|
497 |
-
if isinstance(texts, str):
|
498 |
-
texts = [texts]
|
499 |
-
elif isinstance(texts, np.ndarray):
|
500 |
-
texts = texts.tolist()
|
501 |
-
|
502 |
-
# Convert all elements to strings
|
503 |
-
texts = [str(text) for text in texts]
|
504 |
-
|
505 |
-
results = []
|
506 |
-
batch_size = 16 # Process in smaller batches
|
507 |
-
|
508 |
-
for i in range(0, len(texts), batch_size):
|
509 |
-
batch_texts = texts[i:i + batch_size]
|
510 |
|
511 |
-
|
512 |
-
|
513 |
-
# Tokenize batch
|
514 |
-
inputs = tokenizer(
|
515 |
-
batch_texts,
|
516 |
-
return_tensors="pt",
|
517 |
-
padding=True,
|
518 |
-
truncation=True,
|
519 |
-
max_length=config.MAX_TEXT_LENGTH
|
520 |
-
).to(device)
|
521 |
-
|
522 |
-
# Batch inference
|
523 |
-
outputs = model(**inputs)
|
524 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()
|
525 |
-
|
526 |
-
results.extend(probs)
|
527 |
-
|
528 |
-
except Exception as e:
|
529 |
-
logger.error(f"Prediction batch failed: {e}")
|
530 |
-
# Return neutral predictions for failed batch
|
531 |
-
batch_size_actual = len(batch_texts)
|
532 |
-
if hasattr(model.config, 'num_labels') and model.config.num_labels == 3:
|
533 |
-
neutral_probs = np.array([[0.33, 0.34, 0.33]] * batch_size_actual)
|
534 |
-
else:
|
535 |
-
neutral_probs = np.array([[0.5, 0.5]] * batch_size_actual)
|
536 |
-
results.extend(neutral_probs)
|
537 |
-
|
538 |
-
return np.array(results)
|
539 |
-
|
540 |
-
return predict_proba
|
541 |
-
|
542 |
-
@handle_errors(default_return=("Analysis failed", None, None))
|
543 |
-
def analyze_with_shap(self, text: str, language: str = 'auto', num_samples: int = 100) -> Tuple[str, go.Figure, Dict]:
|
544 |
-
"""FIXED SHAP analysis implementation"""
|
545 |
-
if not text.strip():
|
546 |
-
return "Please enter text for analysis", None, {}
|
547 |
-
|
548 |
-
# Detect language and get model
|
549 |
-
if language == 'auto':
|
550 |
-
detected_lang = self.model_manager.detect_language(text)
|
551 |
-
else:
|
552 |
-
detected_lang = language
|
553 |
-
|
554 |
-
model, tokenizer = self.model_manager.get_model(detected_lang)
|
555 |
-
|
556 |
-
try:
|
557 |
-
# Create FIXED prediction function
|
558 |
-
predict_fn = self.create_prediction_function(model, tokenizer, self.model_manager.device)
|
559 |
-
|
560 |
-
# Test the prediction function first
|
561 |
-
test_pred = predict_fn([text])
|
562 |
-
if test_pred is None or len(test_pred) == 0:
|
563 |
-
return "Prediction function test failed", None, {}
|
564 |
|
565 |
-
|
566 |
-
|
567 |
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
if hasattr(shap_values, 'data') and hasattr(shap_values, 'values'):
|
573 |
-
tokens = shap_values.data[0] if len(shap_values.data) > 0 else []
|
574 |
-
values = shap_values.values[0] if len(shap_values.values) > 0 else []
|
575 |
else:
|
576 |
-
|
577 |
-
|
578 |
-
if len(tokens) == 0 or len(values) == 0:
|
579 |
-
return "No tokens or values extracted from SHAP", None, {}
|
580 |
-
|
581 |
-
# Handle multi-dimensional values
|
582 |
-
if len(values.shape) > 1:
|
583 |
-
# Use positive class values (last column for 3-class, second for 2-class)
|
584 |
-
pos_values = values[:, -1] if values.shape[1] >= 2 else values[:, 0]
|
585 |
-
else:
|
586 |
-
pos_values = values
|
587 |
-
|
588 |
-
# Ensure we have matching lengths
|
589 |
-
min_len = min(len(tokens), len(pos_values))
|
590 |
-
tokens = tokens[:min_len]
|
591 |
-
pos_values = pos_values[:min_len]
|
592 |
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
x=list(range(len(tokens))),
|
600 |
-
y=pos_values,
|
601 |
-
text=tokens,
|
602 |
-
textposition='outside',
|
603 |
-
marker_color=colors,
|
604 |
-
name='SHAP Values',
|
605 |
-
hovertemplate='<b>%{text}</b><br>SHAP Value: %{y:.4f}<extra></extra>'
|
606 |
-
))
|
607 |
-
|
608 |
-
fig.update_layout(
|
609 |
-
title=f"SHAP Analysis - Token Importance (Samples: {num_samples})",
|
610 |
-
xaxis_title="Token Index",
|
611 |
-
yaxis_title="SHAP Value",
|
612 |
-
height=500,
|
613 |
-
xaxis=dict(tickmode='array', tickvals=list(range(len(tokens))), ticktext=tokens)
|
614 |
-
)
|
615 |
-
|
616 |
-
# Create analysis summary
|
617 |
-
analysis_data = {
|
618 |
-
'method': 'SHAP',
|
619 |
-
'language': detected_lang,
|
620 |
-
'total_tokens': len(tokens),
|
621 |
-
'samples_used': num_samples,
|
622 |
-
'positive_influence': sum(1 for v in pos_values if v > 0),
|
623 |
-
'negative_influence': sum(1 for v in pos_values if v < 0),
|
624 |
-
'most_important_tokens': [(str(tokens[i]), float(pos_values[i]))
|
625 |
-
for i in np.argsort(np.abs(pos_values))[-5:]]
|
626 |
-
}
|
627 |
-
|
628 |
-
summary_text = f"""
|
629 |
-
**SHAP Analysis Results:**
|
630 |
-
- **Language:** {detected_lang.upper()}
|
631 |
-
- **Total Tokens:** {analysis_data['total_tokens']}
|
632 |
-
- **Samples Used:** {num_samples}
|
633 |
-
- **Positive Influence Tokens:** {analysis_data['positive_influence']}
|
634 |
-
- **Negative Influence Tokens:** {analysis_data['negative_influence']}
|
635 |
-
- **Most Important Tokens:** {', '.join([f"{token}({score:.3f})" for token, score in analysis_data['most_important_tokens']])}
|
636 |
-
- **Status:** SHAP analysis completed successfully
|
637 |
-
"""
|
638 |
-
|
639 |
-
return summary_text, fig, analysis_data
|
640 |
-
|
641 |
-
except Exception as e:
|
642 |
-
logger.error(f"SHAP analysis failed: {e}")
|
643 |
-
error_msg = f"""
|
644 |
-
**SHAP Analysis Failed:**
|
645 |
-
- **Error:** {str(e)}
|
646 |
-
- **Language:** {detected_lang.upper()}
|
647 |
-
- **Suggestion:** Try with a shorter text or reduce number of samples
|
648 |
-
|
649 |
-
**Common fixes:**
|
650 |
-
- Reduce sample size to 50-100
|
651 |
-
- Use shorter input text (< 200 words)
|
652 |
-
- Check if model supports the text language
|
653 |
-
"""
|
654 |
-
return error_msg, None, {}
|
655 |
-
|
656 |
-
@handle_errors(default_return=("Analysis failed", None, None))
|
657 |
-
def analyze_with_lime(self, text: str, language: str = 'auto', num_samples: int = 100) -> Tuple[str, go.Figure, Dict]:
|
658 |
-
"""FIXED LIME analysis implementation - Bug Fix for mode parameter"""
|
659 |
-
if not text.strip():
|
660 |
-
return "Please enter text for analysis", None, {}
|
661 |
-
|
662 |
-
# Detect language and get model
|
663 |
-
if language == 'auto':
|
664 |
-
detected_lang = self.model_manager.detect_language(text)
|
665 |
-
else:
|
666 |
-
detected_lang = language
|
667 |
-
|
668 |
-
model, tokenizer = self.model_manager.get_model(detected_lang)
|
669 |
|
670 |
-
|
671 |
-
|
672 |
-
predict_fn = self.create_prediction_function(model, tokenizer, self.model_manager.device)
|
673 |
-
|
674 |
-
# Test the prediction function first
|
675 |
-
test_pred = predict_fn([text])
|
676 |
-
if test_pred is None or len(test_pred) == 0:
|
677 |
-
return "Prediction function test failed", None, {}
|
678 |
-
|
679 |
-
# Determine class names based on model output
|
680 |
-
num_classes = test_pred.shape[1] if len(test_pred.shape) > 1 else 2
|
681 |
-
if num_classes == 3:
|
682 |
-
class_names = ['Negative', 'Neutral', 'Positive']
|
683 |
-
else:
|
684 |
-
class_names = ['Negative', 'Positive']
|
685 |
-
|
686 |
-
# Initialize LIME explainer - FIXED: Remove 'mode' parameter
|
687 |
-
explainer = LimeTextExplainer(class_names=class_names)
|
688 |
-
|
689 |
-
# Get LIME explanation
|
690 |
-
exp = explainer.explain_instance(
|
691 |
-
text,
|
692 |
-
predict_fn,
|
693 |
-
num_features=min(20, len(text.split())), # Limit features
|
694 |
-
num_samples=num_samples
|
695 |
-
)
|
696 |
-
|
697 |
-
# Extract feature importance
|
698 |
-
lime_data = exp.as_list()
|
699 |
-
|
700 |
-
if not lime_data:
|
701 |
-
return "No LIME features extracted", None, {}
|
702 |
-
|
703 |
-
# Create visualization
|
704 |
-
words = [item[0] for item in lime_data]
|
705 |
-
scores = [item[1] for item in lime_data]
|
706 |
-
|
707 |
-
fig = go.Figure()
|
708 |
-
|
709 |
-
colors = ['red' if s < 0 else 'green' for s in scores]
|
710 |
-
|
711 |
-
fig.add_trace(go.Bar(
|
712 |
-
y=words,
|
713 |
-
x=scores,
|
714 |
-
orientation='h',
|
715 |
-
marker_color=colors,
|
716 |
-
text=[f'{s:.3f}' for s in scores],
|
717 |
-
textposition='auto',
|
718 |
-
name='LIME Importance',
|
719 |
-
hovertemplate='<b>%{y}</b><br>Importance: %{x:.4f}<extra></extra>'
|
720 |
-
))
|
721 |
-
|
722 |
-
fig.update_layout(
|
723 |
-
title=f"LIME Analysis - Feature Importance (Samples: {num_samples})",
|
724 |
-
xaxis_title="Importance Score",
|
725 |
-
yaxis_title="Words/Phrases",
|
726 |
-
height=500
|
727 |
-
)
|
728 |
-
|
729 |
-
# Create analysis summary
|
730 |
-
analysis_data = {
|
731 |
-
'method': 'LIME',
|
732 |
-
'language': detected_lang,
|
733 |
-
'features_analyzed': len(lime_data),
|
734 |
-
'samples_used': num_samples,
|
735 |
-
'positive_features': sum(1 for _, score in lime_data if score > 0),
|
736 |
-
'negative_features': sum(1 for _, score in lime_data if score < 0),
|
737 |
-
'feature_importance': lime_data
|
738 |
-
}
|
739 |
-
|
740 |
-
summary_text = f"""
|
741 |
-
**LIME Analysis Results:**
|
742 |
-
- **Language:** {detected_lang.upper()}
|
743 |
-
- **Features Analyzed:** {analysis_data['features_analyzed']}
|
744 |
-
- **Classes:** {', '.join(class_names)}
|
745 |
-
- **Samples Used:** {num_samples}
|
746 |
-
- **Positive Features:** {analysis_data['positive_features']}
|
747 |
-
- **Negative Features:** {analysis_data['negative_features']}
|
748 |
-
- **Top Features:** {', '.join([f"{word}({score:.3f})" for word, score in lime_data[:5]])}
|
749 |
-
- **Status:** LIME analysis completed successfully
|
750 |
-
"""
|
751 |
-
|
752 |
-
return summary_text, fig, analysis_data
|
753 |
-
|
754 |
-
except Exception as e:
|
755 |
-
logger.error(f"LIME analysis failed: {e}")
|
756 |
-
error_msg = f"""
|
757 |
-
**LIME Analysis Failed:**
|
758 |
-
- **Error:** {str(e)}
|
759 |
-
- **Language:** {detected_lang.upper()}
|
760 |
-
- **Suggestion:** Try with a shorter text or reduce number of samples
|
761 |
-
|
762 |
-
**Bug Fix Applied:**
|
763 |
-
- ✅ Removed 'mode' parameter from LimeTextExplainer initialization
|
764 |
-
- ✅ This should resolve the "unexpected keyword argument 'mode'" error
|
765 |
-
|
766 |
-
**Common fixes:**
|
767 |
-
- Reduce sample size to 50-100
|
768 |
-
- Use shorter input text (< 200 words)
|
769 |
-
- Check if model supports the text language
|
770 |
-
"""
|
771 |
-
return error_msg, None, {}
|
772 |
-
|
773 |
-
# Optimized Plotly Visualization System
|
774 |
-
class PlotlyVisualizer:
|
775 |
-
"""Enhanced Plotly visualizations"""
|
776 |
-
|
777 |
-
@staticmethod
|
778 |
-
@handle_errors(default_return=None)
|
779 |
-
def create_sentiment_gauge(result: Dict, theme: ThemeContext) -> go.Figure:
|
780 |
-
"""Create animated sentiment gauge"""
|
781 |
-
colors = theme.colors
|
782 |
|
783 |
-
|
784 |
-
|
785 |
-
fig = go.Figure(go.Indicator(
|
786 |
-
mode="gauge+number+delta",
|
787 |
-
value=result['pos_prob'] * 100,
|
788 |
-
domain={'x': [0, 1], 'y': [0, 1]},
|
789 |
-
title={'text': f"Sentiment: {result['sentiment']}"},
|
790 |
-
delta={'reference': 50},
|
791 |
-
gauge={
|
792 |
-
'axis': {'range': [None, 100]},
|
793 |
-
'bar': {'color': colors['pos'] if result['sentiment'] == 'Positive' else colors['neg']},
|
794 |
-
'steps': [
|
795 |
-
{'range': [0, 33], 'color': colors['neg']},
|
796 |
-
{'range': [33, 67], 'color': colors['neu']},
|
797 |
-
{'range': [67, 100], 'color': colors['pos']}
|
798 |
-
],
|
799 |
-
'threshold': {
|
800 |
-
'line': {'color': "red", 'width': 4},
|
801 |
-
'thickness': 0.75,
|
802 |
-
'value': 90
|
803 |
-
}
|
804 |
-
}
|
805 |
-
))
|
806 |
-
else:
|
807 |
-
# Two-way gauge
|
808 |
-
fig = go.Figure(go.Indicator(
|
809 |
-
mode="gauge+number",
|
810 |
-
value=result['confidence'] * 100,
|
811 |
-
domain={'x': [0, 1], 'y': [0, 1]},
|
812 |
-
title={'text': f"Confidence: {result['sentiment']}"},
|
813 |
-
gauge={
|
814 |
-
'axis': {'range': [None, 100]},
|
815 |
-
'bar': {'color': colors['pos'] if result['sentiment'] == 'Positive' else colors['neg']},
|
816 |
-
'steps': [
|
817 |
-
{'range': [0, 50], 'color': "lightgray"},
|
818 |
-
{'range': [50, 100], 'color': "gray"}
|
819 |
-
]
|
820 |
-
}
|
821 |
-
))
|
822 |
|
823 |
-
|
824 |
-
|
|
|
|
|
|
|
|
|
825 |
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
"""Create probability bar chart"""
|
830 |
-
colors = theme.colors
|
831 |
-
|
832 |
-
if result.get('has_neutral', False):
|
833 |
-
labels = ['Negative', 'Neutral', 'Positive']
|
834 |
-
values = [result['neg_prob'], result['neu_prob'], result['pos_prob']]
|
835 |
-
bar_colors = [colors['neg'], colors['neu'], colors['pos']]
|
836 |
-
else:
|
837 |
-
labels = ['Negative', 'Positive']
|
838 |
-
values = [result['neg_prob'], result['pos_prob']]
|
839 |
-
bar_colors = [colors['neg'], colors['pos']]
|
840 |
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
852 |
|
853 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
854 |
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
"""Create batch analysis summary"""
|
859 |
-
colors = theme.colors
|
860 |
-
|
861 |
-
# Count sentiments
|
862 |
-
sentiments = [r['sentiment'] for r in results if 'sentiment' in r and r['sentiment'] != 'Error']
|
863 |
-
sentiment_counts = Counter(sentiments)
|
864 |
-
|
865 |
-
# Create pie chart
|
866 |
-
fig = go.Figure(data=[go.Pie(
|
867 |
-
labels=list(sentiment_counts.keys()),
|
868 |
-
values=list(sentiment_counts.values()),
|
869 |
-
marker_colors=[colors.get(s.lower()[:3], '#999999') for s in sentiment_counts.keys()],
|
870 |
-
textinfo='label+percent',
|
871 |
-
hole=0.3
|
872 |
-
)])
|
873 |
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
886 |
|
887 |
-
if
|
888 |
-
|
889 |
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
896 |
|
897 |
fig.update_layout(
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
@staticmethod
|
907 |
-
@handle_errors(default_return=None)
|
908 |
-
def create_history_dashboard(history: List[Dict], theme: ThemeContext) -> go.Figure:
|
909 |
-
"""Create comprehensive history dashboard"""
|
910 |
-
if len(history) < 2:
|
911 |
-
return go.Figure()
|
912 |
-
|
913 |
-
# Create subplots
|
914 |
-
fig = make_subplots(
|
915 |
-
rows=2, cols=2,
|
916 |
-
subplot_titles=['Sentiment Timeline', 'Confidence Distribution',
|
917 |
-
'Language Distribution', 'Sentiment Summary'],
|
918 |
-
specs=[[{"secondary_y": False}, {"secondary_y": False}],
|
919 |
-
[{"type": "pie"}, {"type": "bar"}]]
|
920 |
)
|
921 |
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
row=1, col=1
|
938 |
-
)
|
939 |
-
|
940 |
-
# Confidence distribution
|
941 |
-
fig.add_trace(
|
942 |
-
go.Histogram(x=confidences, nbinsx=10, name='Confidence'),
|
943 |
-
row=1, col=2
|
944 |
-
)
|
945 |
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
name="Languages"),
|
951 |
-
row=2, col=1
|
952 |
)
|
953 |
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
958 |
-
|
959 |
-
marker_color=sent_colors),
|
960 |
-
row=2, col=2
|
961 |
-
)
|
962 |
|
963 |
-
fig.
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
|
968 |
-
"""Enhanced data operations"""
|
969 |
-
|
970 |
-
@staticmethod
|
971 |
-
@handle_errors(default_return=(None, "Export failed"))
|
972 |
-
def export_data(data: List[Dict], format_type: str) -> Tuple[Optional[str], str]:
|
973 |
-
"""Export data with comprehensive information"""
|
974 |
-
if not data:
|
975 |
-
return None, "No data to export"
|
976 |
|
977 |
-
|
978 |
-
suffix=f'.{format_type}', encoding='utf-8')
|
979 |
|
980 |
-
|
981 |
-
|
982 |
-
|
983 |
-
|
984 |
-
|
985 |
-
writer.writerow([
|
986 |
-
entry.get('timestamp', ''),
|
987 |
-
entry.get('text', ''),
|
988 |
-
entry.get('sentiment', ''),
|
989 |
-
f"{entry.get('confidence', 0):.4f}",
|
990 |
-
entry.get('language', 'en'),
|
991 |
-
f"{entry.get('pos_prob', 0):.4f}",
|
992 |
-
f"{entry.get('neg_prob', 0):.4f}",
|
993 |
-
f"{entry.get('neu_prob', 0):.4f}",
|
994 |
-
entry.get('word_count', 0)
|
995 |
-
])
|
996 |
-
elif format_type == 'json':
|
997 |
-
json.dump(data, temp_file, indent=2, ensure_ascii=False)
|
998 |
|
999 |
-
|
1000 |
-
return temp_file.name, f"Exported {len(data)} entries"
|
1001 |
|
1002 |
-
|
1003 |
-
|
1004 |
-
|
1005 |
-
"""Process uploaded files"""
|
1006 |
-
if not file:
|
1007 |
-
return ""
|
1008 |
-
|
1009 |
-
content = file.read().decode('utf-8')
|
1010 |
-
|
1011 |
-
if file.name.endswith('.csv'):
|
1012 |
-
csv_file = io.StringIO(content)
|
1013 |
-
reader = csv.reader(csv_file)
|
1014 |
-
try:
|
1015 |
-
next(reader) # Skip header
|
1016 |
-
texts = []
|
1017 |
-
for row in reader:
|
1018 |
-
if row and row[0].strip():
|
1019 |
-
text = row[0].strip().strip('"')
|
1020 |
-
if text:
|
1021 |
-
texts.append(text)
|
1022 |
-
return '\n'.join(texts)
|
1023 |
-
except:
|
1024 |
-
lines = content.strip().split('\n')[1:]
|
1025 |
-
texts = []
|
1026 |
-
for line in lines:
|
1027 |
-
if line.strip():
|
1028 |
-
text = line.strip().strip('"')
|
1029 |
-
if text:
|
1030 |
-
texts.append(text)
|
1031 |
-
return '\n'.join(texts)
|
1032 |
|
1033 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1034 |
|
|
|
|
|
|
|
|
|
|
|
1035 |
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
1039 |
-
|
1040 |
-
|
1041 |
-
self.advanced_engine = AdvancedAnalysisEngine()
|
1042 |
-
self.history = HistoryManager()
|
1043 |
-
self.data_handler = DataHandler()
|
1044 |
-
|
1045 |
-
# Multi-language examples
|
1046 |
-
self.examples = [
|
1047 |
-
# Auto Detect
|
1048 |
-
["The film had its moments, but overall it felt a bit too long and lacked emotional depth. Some scenes were visually impressive, yet they failed to connect emotionally. By the end, I found myself disengaged and unsatisfied."],
|
1049 |
|
1050 |
-
|
1051 |
-
|
|
|
|
|
1052 |
|
1053 |
-
|
1054 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1055 |
|
1056 |
-
|
1057 |
-
|
|
|
|
|
1058 |
|
1059 |
-
|
1060 |
-
|
|
|
1061 |
|
1062 |
-
|
1063 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1064 |
|
1065 |
-
|
1066 |
-
|
1067 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1068 |
|
1069 |
-
|
1070 |
-
|
1071 |
-
remove_punct: bool, remove_nums: bool):
|
1072 |
-
"""Optimized single text analysis"""
|
1073 |
-
if not text.strip():
|
1074 |
-
return "Please enter text", None, None
|
1075 |
-
|
1076 |
-
# Map display names to language codes
|
1077 |
-
language_map = {v: k for k, v in config.SUPPORTED_LANGUAGES.items()}
|
1078 |
-
language_code = language_map.get(language, 'auto')
|
1079 |
-
|
1080 |
-
preprocessing_options = {
|
1081 |
-
'clean_text': clean_text,
|
1082 |
-
'remove_punctuation': remove_punct,
|
1083 |
-
'remove_numbers': remove_nums
|
1084 |
-
}
|
1085 |
|
1086 |
-
|
1087 |
-
|
1088 |
-
|
1089 |
-
|
1090 |
-
history_entry = {
|
1091 |
-
'text': text[:100] + '...' if len(text) > 100 else text,
|
1092 |
-
'full_text': text,
|
1093 |
-
'sentiment': result['sentiment'],
|
1094 |
-
'confidence': result['confidence'],
|
1095 |
-
'pos_prob': result.get('pos_prob', 0),
|
1096 |
-
'neg_prob': result.get('neg_prob', 0),
|
1097 |
-
'neu_prob': result.get('neu_prob', 0),
|
1098 |
-
'language': result['language'],
|
1099 |
-
'word_count': result['word_count'],
|
1100 |
-
'analysis_type': 'single'
|
1101 |
-
}
|
1102 |
-
self.history.add(history_entry)
|
1103 |
-
|
1104 |
-
# Create visualizations
|
1105 |
-
theme_ctx = ThemeContext(theme)
|
1106 |
-
gauge_fig = PlotlyVisualizer.create_sentiment_gauge(result, theme_ctx)
|
1107 |
-
bars_fig = PlotlyVisualizer.create_probability_bars(result, theme_ctx)
|
1108 |
-
|
1109 |
-
# Create comprehensive result text
|
1110 |
-
info_text = f"""
|
1111 |
-
**Analysis Results:**
|
1112 |
-
- **Sentiment:** {result['sentiment']} ({result['confidence']:.3f} confidence)
|
1113 |
-
- **Language:** {result['language'].upper()}
|
1114 |
-
- **Statistics:** {result['word_count']} words, {result['char_count']} characters
|
1115 |
-
- **Probabilities:** Positive: {result.get('pos_prob', 0):.3f}, Negative: {result.get('neg_prob', 0):.3f}, Neutral: {result.get('neu_prob', 0):.3f}
|
1116 |
-
"""
|
1117 |
-
|
1118 |
-
return info_text, gauge_fig, bars_fig
|
1119 |
-
|
1120 |
-
@handle_errors(default_return=("Please enter texts", None, None, None))
|
1121 |
-
def analyze_batch(self, batch_text: str, language: str, theme: str,
|
1122 |
-
clean_text: bool, remove_punct: bool, remove_nums: bool):
|
1123 |
-
"""Enhanced batch analysis with parallel processing"""
|
1124 |
-
if not batch_text.strip():
|
1125 |
-
return "Please enter texts (one per line)", None, None, None
|
1126 |
|
1127 |
-
|
1128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1129 |
|
1130 |
-
if
|
1131 |
-
return
|
1132 |
|
1133 |
-
|
1134 |
-
return "No valid texts found", None, None, None
|
1135 |
|
1136 |
-
|
1137 |
-
|
1138 |
-
|
|
|
|
|
1139 |
|
1140 |
-
|
1141 |
-
'clean_text': clean_text,
|
1142 |
-
'remove_punctuation': remove_punct,
|
1143 |
-
'remove_numbers': remove_nums
|
1144 |
-
}
|
1145 |
|
1146 |
-
|
1147 |
-
|
1148 |
-
|
1149 |
-
|
1150 |
-
|
1151 |
-
|
1152 |
-
if 'error' not in result:
|
1153 |
-
entry = {
|
1154 |
-
'text': result['text'],
|
1155 |
-
'full_text': result['full_text'],
|
1156 |
-
'sentiment': result['sentiment'],
|
1157 |
-
'confidence': result['confidence'],
|
1158 |
-
'pos_prob': result.get('pos_prob', 0),
|
1159 |
-
'neg_prob': result.get('neg_prob', 0),
|
1160 |
-
'neu_prob': result.get('neu_prob', 0),
|
1161 |
-
'language': result['language'],
|
1162 |
-
'word_count': result['word_count'],
|
1163 |
-
'analysis_type': 'batch',
|
1164 |
-
'batch_index': result['batch_index']
|
1165 |
-
}
|
1166 |
-
batch_entries.append(entry)
|
1167 |
-
|
1168 |
-
self.history.add_batch(batch_entries)
|
1169 |
-
|
1170 |
-
# Create visualizations
|
1171 |
-
theme_ctx = ThemeContext(theme)
|
1172 |
-
summary_fig = PlotlyVisualizer.create_batch_summary(results, theme_ctx)
|
1173 |
-
confidence_fig = PlotlyVisualizer.create_confidence_distribution(results)
|
1174 |
-
|
1175 |
-
# Create results DataFrame
|
1176 |
-
df_data = []
|
1177 |
-
for result in results:
|
1178 |
-
if 'error' in result:
|
1179 |
-
df_data.append({
|
1180 |
-
'Index': result['batch_index'] + 1,
|
1181 |
-
'Text': result['text'],
|
1182 |
-
'Sentiment': 'Error',
|
1183 |
-
'Confidence': 0.0,
|
1184 |
-
'Language': 'Unknown',
|
1185 |
-
'Error': result['error']
|
1186 |
-
})
|
1187 |
-
else:
|
1188 |
-
df_data.append({
|
1189 |
-
'Index': result['batch_index'] + 1,
|
1190 |
-
'Text': result['text'],
|
1191 |
-
'Sentiment': result['sentiment'],
|
1192 |
-
'Confidence': f"{result['confidence']:.3f}",
|
1193 |
-
'Language': result['language'].upper(),
|
1194 |
-
'Word_Count': result.get('word_count', 0)
|
1195 |
-
})
|
1196 |
-
|
1197 |
-
df = pd.DataFrame(df_data)
|
1198 |
-
|
1199 |
-
# Create summary text
|
1200 |
-
successful_results = [r for r in results if 'error' not in r]
|
1201 |
-
error_count = len(results) - len(successful_results)
|
1202 |
-
|
1203 |
-
if successful_results:
|
1204 |
-
sentiment_counts = Counter([r['sentiment'] for r in successful_results])
|
1205 |
-
avg_confidence = np.mean([r['confidence'] for r in successful_results])
|
1206 |
-
languages = Counter([r['language'] for r in successful_results])
|
1207 |
-
|
1208 |
-
summary_text = f"""
|
1209 |
-
**Batch Analysis Summary:**
|
1210 |
-
- **Total Texts:** {len(texts)}
|
1211 |
-
- **Successful:** {len(successful_results)}
|
1212 |
-
- **Errors:** {error_count}
|
1213 |
-
- **Average Confidence:** {avg_confidence:.3f}
|
1214 |
-
- **Sentiments:** {dict(sentiment_counts)}
|
1215 |
-
- **Languages Detected:** {dict(languages)}
|
1216 |
-
"""
|
1217 |
-
else:
|
1218 |
-
summary_text = f"All {len(texts)} texts failed to analyze."
|
1219 |
-
|
1220 |
-
return summary_text, df, summary_fig, confidence_fig
|
1221 |
|
1222 |
-
|
1223 |
-
|
1224 |
-
|
1225 |
-
|
1226 |
-
|
1227 |
-
|
1228 |
-
|
1229 |
-
return self.advanced_engine.analyze_with_shap(text, language_code, num_samples)
|
1230 |
|
1231 |
-
|
1232 |
-
|
1233 |
-
"""Perform FIXED LIME analysis with configurable samples"""
|
1234 |
-
language_map = {v: k for k, v in config.SUPPORTED_LANGUAGES.items()}
|
1235 |
-
language_code = language_map.get(language, 'auto')
|
1236 |
-
|
1237 |
-
return self.advanced_engine.analyze_with_lime(text, language_code, num_samples)
|
1238 |
|
1239 |
-
|
1240 |
-
|
1241 |
-
"""Plot comprehensive history analysis"""
|
1242 |
-
history = self.history.get_all()
|
1243 |
-
if len(history) < 2:
|
1244 |
-
return None, f"Need at least 2 analyses for trends. Current: {len(history)}"
|
1245 |
|
1246 |
-
|
|
|
|
|
|
|
|
|
|
|
1247 |
|
1248 |
-
|
1249 |
-
|
1250 |
-
|
1251 |
-
|
1252 |
-
|
1253 |
-
|
1254 |
-
|
1255 |
-
|
1256 |
-
- **Negative:** {stats.get('negative_count', 0)}
|
1257 |
-
- **Neutral:** {stats.get('neutral_count', 0)}
|
1258 |
-
- **Average Confidence:** {stats.get('avg_confidence', 0):.3f}
|
1259 |
-
- **Languages:** {stats.get('languages_detected', 0)}
|
1260 |
-
- **Most Common Language:** {stats.get('most_common_language', 'N/A').upper()}
|
1261 |
-
"""
|
1262 |
-
|
1263 |
-
return fig, stats_text
|
1264 |
|
1265 |
-
|
1266 |
-
|
1267 |
-
|
1268 |
-
|
1269 |
-
|
1270 |
-
|
1271 |
-
|
1272 |
-
|
1273 |
-
|
1274 |
-
|
1275 |
-
|
1276 |
-
|
1277 |
-
|
1278 |
-
|
1279 |
-
|
1280 |
-
- **Languages Detected:** {stats['languages_detected']}
|
1281 |
-
"""
|
1282 |
|
1283 |
-
|
1284 |
-
|
1285 |
-
|
1286 |
-
app = SentimentApp()
|
1287 |
|
1288 |
-
|
1289 |
-
|
1290 |
-
|
1291 |
-
|
1292 |
-
|
1293 |
-
|
1294 |
-
|
1295 |
-
|
1296 |
-
|
1297 |
-
|
1298 |
-
|
1299 |
-
|
1300 |
-
|
1301 |
-
|
1302 |
-
|
1303 |
-
|
1304 |
-
|
1305 |
-
label="Language"
|
1306 |
-
)
|
1307 |
-
theme_selector = gr.Dropdown(
|
1308 |
-
choices=list(config.THEMES.keys()),
|
1309 |
-
value="default",
|
1310 |
-
label="Theme"
|
1311 |
-
)
|
1312 |
-
|
1313 |
-
with gr.Row():
|
1314 |
-
clean_text_cb = gr.Checkbox(label="Clean Text", value=False)
|
1315 |
-
remove_punct_cb = gr.Checkbox(label="Remove Punctuation", value=False)
|
1316 |
-
remove_nums_cb = gr.Checkbox(label="Remove Numbers", value=False)
|
1317 |
-
|
1318 |
-
analyze_btn = gr.Button("Analyze", variant="primary", size="lg")
|
1319 |
-
|
1320 |
-
gr.Examples(
|
1321 |
-
examples=app.examples,
|
1322 |
-
inputs=text_input,
|
1323 |
-
cache_examples=False
|
1324 |
-
)
|
1325 |
-
|
1326 |
-
with gr.Column():
|
1327 |
-
result_output = gr.Textbox(label="Analysis Results", lines=8)
|
1328 |
-
|
1329 |
-
with gr.Row():
|
1330 |
-
gauge_plot = gr.Plot(label="Sentiment Gauge")
|
1331 |
-
probability_plot = gr.Plot(label="Probability Distribution")
|
1332 |
-
|
1333 |
-
# FIXED Advanced Analysis Tab
|
1334 |
-
with gr.Tab("Advanced Analysis"):
|
1335 |
-
gr.Markdown("## Explainable AI Analysis")
|
1336 |
-
gr.Markdown("**SHAP and LIME analysis with FIXED implementation** - now handles text input correctly!")
|
1337 |
-
|
1338 |
-
with gr.Row():
|
1339 |
-
with gr.Column():
|
1340 |
-
advanced_text_input = gr.Textbox(
|
1341 |
-
label="Enter Text for Advanced Analysis",
|
1342 |
-
placeholder="Enter text to analyze with SHAP and LIME...",
|
1343 |
-
lines=6,
|
1344 |
-
value="This movie is absolutely fantastic and amazing!"
|
1345 |
-
)
|
1346 |
-
|
1347 |
-
with gr.Row():
|
1348 |
-
advanced_language = gr.Dropdown(
|
1349 |
-
choices=list(config.SUPPORTED_LANGUAGES.values()),
|
1350 |
-
value="Auto Detect",
|
1351 |
-
label="Language"
|
1352 |
-
)
|
1353 |
-
|
1354 |
-
num_samples_slider = gr.Slider(
|
1355 |
-
minimum=50,
|
1356 |
-
maximum=300,
|
1357 |
-
value=100,
|
1358 |
-
step=25,
|
1359 |
-
label="Number of Samples",
|
1360 |
-
info="Lower = Faster, Higher = More Accurate"
|
1361 |
-
)
|
1362 |
-
|
1363 |
-
with gr.Row():
|
1364 |
-
shap_btn = gr.Button("SHAP Analysis", variant="primary")
|
1365 |
-
lime_btn = gr.Button("LIME Analysis", variant="secondary")
|
1366 |
-
|
1367 |
-
gr.Markdown("""
|
1368 |
-
|
1369 |
-
**📊 Analysis Methods:**
|
1370 |
-
- **SHAP**: Token-level importance scores using Text masker
|
1371 |
-
- **LIME**: Feature importance through text perturbation
|
1372 |
-
|
1373 |
-
**⚡ Expected Performance:**
|
1374 |
-
- 50 samples: ~10-20s | 100 samples: ~20-40s | 200+ samples: ~40-80s
|
1375 |
-
""")
|
1376 |
-
|
1377 |
-
with gr.Column():
|
1378 |
-
advanced_results = gr.Textbox(label="Analysis Summary", lines=12)
|
1379 |
-
|
1380 |
-
with gr.Row():
|
1381 |
-
advanced_plot = gr.Plot(label="Feature Importance Visualization")
|
1382 |
-
|
1383 |
-
with gr.Tab("Batch Analysis"):
|
1384 |
-
with gr.Row():
|
1385 |
-
with gr.Column():
|
1386 |
-
file_upload = gr.File(
|
1387 |
-
label="Upload File (CSV/TXT)",
|
1388 |
-
file_types=[".csv", ".txt"]
|
1389 |
-
)
|
1390 |
-
batch_input = gr.Textbox(
|
1391 |
-
label="Batch Input (one text per line)",
|
1392 |
-
placeholder="Enter multiple texts, one per line...",
|
1393 |
-
lines=10
|
1394 |
-
)
|
1395 |
-
|
1396 |
-
with gr.Row():
|
1397 |
-
batch_language = gr.Dropdown(
|
1398 |
-
choices=list(config.SUPPORTED_LANGUAGES.values()),
|
1399 |
-
value="Auto Detect",
|
1400 |
-
label="Language"
|
1401 |
-
)
|
1402 |
-
batch_theme = gr.Dropdown(
|
1403 |
-
choices=list(config.THEMES.keys()),
|
1404 |
-
value="default",
|
1405 |
-
label="Theme"
|
1406 |
-
)
|
1407 |
-
|
1408 |
-
with gr.Row():
|
1409 |
-
batch_clean_cb = gr.Checkbox(label="Clean Text", value=False)
|
1410 |
-
batch_punct_cb = gr.Checkbox(label="Remove Punctuation", value=False)
|
1411 |
-
batch_nums_cb = gr.Checkbox(label="Remove Numbers", value=False)
|
1412 |
-
|
1413 |
-
with gr.Row():
|
1414 |
-
load_file_btn = gr.Button("Load File")
|
1415 |
-
analyze_batch_btn = gr.Button("Analyze Batch", variant="primary")
|
1416 |
-
|
1417 |
-
with gr.Column():
|
1418 |
-
batch_summary = gr.Textbox(label="Batch Summary", lines=8)
|
1419 |
-
batch_results_df = gr.Dataframe(
|
1420 |
-
label="Detailed Results",
|
1421 |
-
headers=["Index", "Text", "Sentiment", "Confidence", "Language", "Word_Count"],
|
1422 |
-
datatype=["number", "str", "str", "str", "str", "number"]
|
1423 |
-
)
|
1424 |
-
|
1425 |
-
with gr.Row():
|
1426 |
-
batch_plot = gr.Plot(label="Batch Analysis Summary")
|
1427 |
-
confidence_dist_plot = gr.Plot(label="Confidence Distribution")
|
1428 |
-
|
1429 |
-
with gr.Tab("History & Analytics"):
|
1430 |
-
with gr.Row():
|
1431 |
-
with gr.Column():
|
1432 |
-
with gr.Row():
|
1433 |
-
refresh_history_btn = gr.Button("Refresh History")
|
1434 |
-
clear_history_btn = gr.Button("Clear History", variant="stop")
|
1435 |
-
status_btn = gr.Button("Get Status")
|
1436 |
-
|
1437 |
-
history_theme = gr.Dropdown(
|
1438 |
-
choices=list(config.THEMES.keys()),
|
1439 |
-
value="default",
|
1440 |
-
label="Dashboard Theme"
|
1441 |
-
)
|
1442 |
-
|
1443 |
-
with gr.Row():
|
1444 |
-
export_csv_btn = gr.Button("Export CSV")
|
1445 |
-
export_json_btn = gr.Button("Export JSON")
|
1446 |
-
|
1447 |
-
with gr.Column():
|
1448 |
-
history_status = gr.Textbox(label="History Status", lines=8)
|
1449 |
-
|
1450 |
-
history_dashboard = gr.Plot(label="History Analytics Dashboard")
|
1451 |
-
|
1452 |
-
with gr.Row():
|
1453 |
-
csv_download = gr.File(label="CSV Download", visible=True)
|
1454 |
-
json_download = gr.File(label="JSON Download", visible=True)
|
1455 |
-
|
1456 |
-
# Event Handlers
|
1457 |
-
|
1458 |
-
# Single Analysis
|
1459 |
-
analyze_btn.click(
|
1460 |
-
app.analyze_single,
|
1461 |
-
inputs=[text_input, language_selector, theme_selector,
|
1462 |
-
clean_text_cb, remove_punct_cb, remove_nums_cb],
|
1463 |
-
outputs=[result_output, gauge_plot, probability_plot]
|
1464 |
-
)
|
1465 |
-
|
1466 |
-
# FIXED Advanced Analysis with sample size control
|
1467 |
-
shap_btn.click(
|
1468 |
-
app.analyze_with_shap,
|
1469 |
-
inputs=[advanced_text_input, advanced_language, num_samples_slider],
|
1470 |
-
outputs=[advanced_results, advanced_plot]
|
1471 |
-
)
|
1472 |
-
|
1473 |
-
lime_btn.click(
|
1474 |
-
app.analyze_with_lime,
|
1475 |
-
inputs=[advanced_text_input, advanced_language, num_samples_slider],
|
1476 |
-
outputs=[advanced_results, advanced_plot]
|
1477 |
-
)
|
1478 |
-
|
1479 |
-
# Batch Analysis
|
1480 |
-
load_file_btn.click(
|
1481 |
-
app.data_handler.process_file,
|
1482 |
-
inputs=file_upload,
|
1483 |
-
outputs=batch_input
|
1484 |
-
)
|
1485 |
-
|
1486 |
-
analyze_batch_btn.click(
|
1487 |
-
app.analyze_batch,
|
1488 |
-
inputs=[batch_input, batch_language, batch_theme,
|
1489 |
-
batch_clean_cb, batch_punct_cb, batch_nums_cb],
|
1490 |
-
outputs=[batch_summary, batch_results_df, batch_plot, confidence_dist_plot]
|
1491 |
-
)
|
1492 |
|
1493 |
-
|
1494 |
-
|
1495 |
-
|
1496 |
-
|
1497 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1498 |
)
|
1499 |
-
|
1500 |
-
|
1501 |
-
|
1502 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1503 |
)
|
1504 |
-
|
1505 |
-
|
1506 |
-
|
1507 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1508 |
)
|
1509 |
-
|
1510 |
-
|
1511 |
-
|
1512 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1513 |
)
|
1514 |
-
|
1515 |
-
|
1516 |
-
|
1517 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1518 |
)
|
1519 |
|
1520 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1521 |
|
1522 |
-
# Application Entry Point
|
1523 |
if __name__ == "__main__":
|
1524 |
-
|
1525 |
-
level=logging.INFO,
|
1526 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
1527 |
-
)
|
1528 |
-
|
1529 |
-
try:
|
1530 |
-
demo = create_interface()
|
1531 |
-
demo.launch(
|
1532 |
-
share=True,
|
1533 |
-
server_name="0.0.0.0",
|
1534 |
-
server_port=7860,
|
1535 |
-
show_error=True
|
1536 |
-
)
|
1537 |
-
except Exception as e:
|
1538 |
-
logger.error(f"Failed to launch application: {e}")
|
1539 |
-
raise
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
|
|
|
|
|
|
3 |
import numpy as np
|
|
|
|
|
|
|
4 |
import json
|
5 |
+
import re
|
6 |
import io
|
|
|
7 |
from datetime import datetime
|
8 |
+
from typing import List, Dict, Tuple
|
9 |
+
from transformers import pipeline, AutoTokenizer
|
10 |
+
import plotly.graph_objects as go
|
11 |
+
from plotly.subplots import make_subplots
|
12 |
+
import sqlite3
|
13 |
+
import hashlib
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
import time
|
15 |
|
16 |
+
# Initialize models
|
17 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest")
|
18 |
+
absa_analyzer = pipeline("ner", model="yangheng/deberta-v3-base-absa-v1.1", aggregation_strategy="simple")
|
|
|
19 |
|
20 |
+
class ReviewAnalyzer:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def __init__(self):
|
22 |
+
self.db_path = "reviews.db"
|
23 |
+
self._init_db()
|
24 |
+
|
25 |
+
def _init_db(self):
|
26 |
+
conn = sqlite3.connect(self.db_path)
|
27 |
+
conn.execute('''
|
28 |
+
CREATE TABLE IF NOT EXISTS usage_log (
|
29 |
+
id INTEGER PRIMARY KEY,
|
30 |
+
user_id TEXT,
|
31 |
+
timestamp DATETIME,
|
32 |
+
analysis_type TEXT,
|
33 |
+
items_count INTEGER
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
)
|
35 |
+
''')
|
36 |
+
conn.close()
|
37 |
+
|
38 |
+
def preprocess_text(self, text: str) -> str:
|
39 |
+
"""Clean and preprocess review text"""
|
40 |
+
text = re.sub(r'http\S+', '', text)
|
41 |
+
text = re.sub(r'[^\w\s]', '', text)
|
42 |
+
text = text.strip().lower()
|
43 |
+
return text
|
44 |
+
|
45 |
+
def extract_aspect_keywords(self, reviews: List[str]) -> Dict:
|
46 |
+
"""Extract aspect-based sentiment keywords"""
|
47 |
+
all_aspects = {'positive': {}, 'negative': {}}
|
48 |
+
detailed_aspects = []
|
49 |
+
|
50 |
+
for review in reviews:
|
51 |
+
if not review.strip() or len(review) < 10:
|
52 |
+
continue
|
53 |
+
|
54 |
+
try:
|
55 |
+
aspects = absa_analyzer(review)
|
56 |
+
for aspect in aspects:
|
57 |
+
word = aspect['word'].lower()
|
58 |
+
label = aspect['entity_group'].lower()
|
59 |
+
confidence = aspect['score']
|
60 |
+
|
61 |
+
# Map labels to sentiment
|
62 |
+
if 'pos' in label or label == 'positive':
|
63 |
+
sentiment = 'positive'
|
64 |
+
elif 'neg' in label or label == 'negative':
|
65 |
+
sentiment = 'negative'
|
66 |
+
else:
|
67 |
+
continue
|
68 |
+
|
69 |
+
# Count aspects
|
70 |
+
if word not in all_aspects[sentiment]:
|
71 |
+
all_aspects[sentiment][word] = 0
|
72 |
+
all_aspects[sentiment][word] += 1
|
73 |
+
|
74 |
+
detailed_aspects.append({
|
75 |
+
'review': review[:50] + '...',
|
76 |
+
'aspect': word,
|
77 |
+
'sentiment': sentiment,
|
78 |
+
'confidence': round(confidence, 3)
|
79 |
+
})
|
80 |
+
except:
|
81 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
# Get top aspects
|
84 |
+
top_positive = sorted(all_aspects['positive'].items(), key=lambda x: x[1], reverse=True)[:10]
|
85 |
+
top_negative = sorted(all_aspects['negative'].items(), key=lambda x: x[1], reverse=True)[:10]
|
86 |
|
87 |
return {
|
88 |
+
'top_positive_aspects': top_positive,
|
89 |
+
'top_negative_aspects': top_negative,
|
90 |
+
'detailed_aspects': detailed_aspects,
|
91 |
+
'summary': {
|
92 |
+
'total_positive_aspects': len(all_aspects['positive']),
|
93 |
+
'total_negative_aspects': len(all_aspects['negative'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
}
|
95 |
+
}
|
96 |
|
97 |
+
def analyze_sentiment(self, reviews: List[str]) -> Dict:
|
98 |
+
"""Analyze sentiment of reviews with keyword extraction"""
|
99 |
+
results = []
|
100 |
+
sentiments = {'positive': 0, 'negative': 0, 'neutral': 0}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
for review in reviews:
|
103 |
+
if not review.strip():
|
104 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
clean_review = self.preprocess_text(review)
|
107 |
+
result = sentiment_analyzer(clean_review)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
label = result['label'].lower()
|
110 |
+
score = result['score']
|
111 |
|
112 |
+
if 'pos' in label:
|
113 |
+
sentiment = 'positive'
|
114 |
+
elif 'neg' in label:
|
115 |
+
sentiment = 'negative'
|
|
|
|
|
|
|
116 |
else:
|
117 |
+
sentiment = 'neutral'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
sentiments[sentiment] += 1
|
120 |
+
results.append({
|
121 |
+
'text': review[:100] + '...' if len(review) > 100 else review,
|
122 |
+
'sentiment': sentiment,
|
123 |
+
'confidence': round(score, 3)
|
124 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
total = len(results)
|
127 |
+
sentiment_percentages = {k: round(v/total*100, 1) for k, v in sentiments.items()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
# Extract keywords
|
130 |
+
keywords = self.extract_aspect_keywords(reviews)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
+
return {
|
133 |
+
'summary': sentiment_percentages,
|
134 |
+
'details': results,
|
135 |
+
'total_reviews': total,
|
136 |
+
'keywords': keywords
|
137 |
+
}
|
138 |
|
139 |
+
def detect_fake_reviews(self, reviews: List[str], metadata: Dict = None) -> Dict:
|
140 |
+
"""Detect potentially fake reviews with optional metadata"""
|
141 |
+
fake_scores = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
# Process metadata if provided
|
144 |
+
metadata_flags = []
|
145 |
+
if metadata and 'timestamps' in metadata and 'usernames' in metadata:
|
146 |
+
metadata_flags = self._analyze_metadata(metadata['timestamps'], metadata['usernames'])
|
147 |
|
148 |
+
for i, review in enumerate(reviews):
|
149 |
+
if not review.strip():
|
150 |
+
continue
|
151 |
+
|
152 |
+
score = 0
|
153 |
+
flags = []
|
154 |
+
|
155 |
+
# Text-based checks
|
156 |
+
if len(review) < 20:
|
157 |
+
score += 0.3
|
158 |
+
flags.append("too_short")
|
159 |
+
|
160 |
+
words = review.lower().split()
|
161 |
+
unique_ratio = len(set(words)) / len(words) if words else 0
|
162 |
+
if unique_ratio < 0.5:
|
163 |
+
score += 0.4
|
164 |
+
flags.append("repetitive")
|
165 |
+
|
166 |
+
punct_ratio = len(re.findall(r'[!?.]', review)) / len(review) if review else 0
|
167 |
+
if punct_ratio > 0.1:
|
168 |
+
score += 0.2
|
169 |
+
flags.append("excessive_punctuation")
|
170 |
+
|
171 |
+
generic_phrases = ['amazing', 'perfect', 'best ever', 'highly recommend']
|
172 |
+
if any(phrase in review.lower() for phrase in generic_phrases):
|
173 |
+
score += 0.1
|
174 |
+
flags.append("generic_language")
|
175 |
+
|
176 |
+
# Add metadata flags if available
|
177 |
+
if i < len(metadata_flags):
|
178 |
+
if metadata_flags[i]:
|
179 |
+
score += 0.3
|
180 |
+
flags.extend(metadata_flags[i])
|
181 |
+
|
182 |
+
fake_scores.append({
|
183 |
+
'text': review[:100] + '...' if len(review) > 100 else review,
|
184 |
+
'fake_probability': min(round(score, 3), 1.0),
|
185 |
+
'status': 'suspicious' if score > 0.5 else 'authentic',
|
186 |
+
'flags': flags
|
187 |
+
})
|
188 |
+
|
189 |
+
suspicious_count = sum(1 for item in fake_scores if item['fake_probability'] > 0.5)
|
190 |
|
191 |
+
return {
|
192 |
+
'summary': {
|
193 |
+
'total_reviews': len(fake_scores),
|
194 |
+
'suspicious_reviews': suspicious_count,
|
195 |
+
'authenticity_rate': round((len(fake_scores) - suspicious_count) / len(fake_scores) * 100, 1) if fake_scores else 0
|
196 |
+
},
|
197 |
+
'details': fake_scores,
|
198 |
+
'metadata_analysis': metadata_flags if metadata_flags else None
|
199 |
+
}
|
200 |
|
201 |
+
def _analyze_metadata(self, timestamps: List[str], usernames: List[str]) -> List[List[str]]:
|
202 |
+
"""Analyze metadata for suspicious patterns"""
|
203 |
+
flags_per_review = [[] for _ in range(len(timestamps))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
+
# Time density analysis
|
206 |
+
if len(timestamps) >= 5:
|
207 |
+
times = []
|
208 |
+
for i, ts in enumerate(timestamps):
|
209 |
+
try:
|
210 |
+
dt = datetime.strptime(ts, "%Y-%m-%d %H:%M:%S")
|
211 |
+
times.append((i, dt))
|
212 |
+
except:
|
213 |
+
continue
|
214 |
+
|
215 |
+
times.sort(key=lambda x: x[1])
|
216 |
+
|
217 |
+
# Check for clusters
|
218 |
+
for i in range(len(times) - 5):
|
219 |
+
if (times[i + 5][1] - times[i][1]).total_seconds() < 300: # 5 mins
|
220 |
+
for j in range(i, i + 6):
|
221 |
+
flags_per_review[times[j][0]].append("time_cluster")
|
222 |
+
|
223 |
+
# Username pattern analysis
|
224 |
+
for i, username in enumerate(usernames):
|
225 |
+
if re.match(r"user_\d{4,}", username):
|
226 |
+
flags_per_review[i].append("suspicious_username")
|
227 |
+
if len(username) < 4:
|
228 |
+
flags_per_review[i].append("short_username")
|
229 |
+
|
230 |
+
return flags_per_review
|
231 |
+
|
232 |
+
def assess_quality(self, reviews: List[str], custom_weights: Dict = None) -> Tuple[Dict, go.Figure]:
|
233 |
+
"""Assess review quality with customizable weights and radar chart"""
|
234 |
+
default_weights = {
|
235 |
+
'length': 0.25,
|
236 |
+
'detail': 0.25,
|
237 |
+
'structure': 0.25,
|
238 |
+
'helpfulness': 0.25
|
239 |
+
}
|
240 |
|
241 |
+
weights = custom_weights if custom_weights else default_weights
|
242 |
+
quality_scores = []
|
243 |
|
244 |
+
for review in reviews:
|
245 |
+
if not review.strip():
|
246 |
+
continue
|
247 |
+
|
248 |
+
factors = {}
|
249 |
+
|
250 |
+
# Length factor
|
251 |
+
length_score = min(len(review) / 200, 1.0)
|
252 |
+
factors['length'] = round(length_score, 2)
|
253 |
+
|
254 |
+
# Detail factor
|
255 |
+
detail_words = ['because', 'however', 'although', 'specifically', 'particularly']
|
256 |
+
detail_score = min(sum(1 for word in detail_words if word in review.lower()) / 3, 1.0)
|
257 |
+
factors['detail'] = round(detail_score, 2)
|
258 |
+
|
259 |
+
# Structure factor
|
260 |
+
sentences = len(re.split(r'[.!?]', review))
|
261 |
+
structure_score = min(sentences / 5, 1.0)
|
262 |
+
factors['structure'] = round(structure_score, 2)
|
263 |
+
|
264 |
+
# Helpfulness factor
|
265 |
+
helpful_words = ['pros', 'cons', 'recommend', 'suggest', 'tip', 'advice']
|
266 |
+
helpful_score = min(sum(1 for word in helpful_words if word in review.lower()) / 2, 1.0)
|
267 |
+
factors['helpfulness'] = round(helpful_score, 2)
|
268 |
+
|
269 |
+
# Calculate weighted score
|
270 |
+
total_score = sum(factors[k] * weights[k] for k in factors.keys())
|
271 |
+
|
272 |
+
quality_scores.append({
|
273 |
+
'text': review[:100] + '...' if len(review) > 100 else review,
|
274 |
+
'quality_score': round(total_score, 3),
|
275 |
+
'factors': factors,
|
276 |
+
'grade': 'A' if total_score > 0.8 else 'B' if total_score > 0.6 else 'C' if total_score > 0.4 else 'D'
|
277 |
+
})
|
278 |
+
|
279 |
+
avg_quality = sum(item['quality_score'] for item in quality_scores) / len(quality_scores) if quality_scores else 0
|
280 |
+
|
281 |
+
# Create radar chart for average factors
|
282 |
+
avg_factors = {}
|
283 |
+
for factor in ['length', 'detail', 'structure', 'helpfulness']:
|
284 |
+
avg_factors[factor] = sum(item['factors'][factor] for item in quality_scores) / len(quality_scores) if quality_scores else 0
|
285 |
+
|
286 |
+
fig = go.Figure()
|
287 |
+
fig.add_trace(go.Scatterpolar(
|
288 |
+
r=list(avg_factors.values()),
|
289 |
+
theta=list(avg_factors.keys()),
|
290 |
+
fill='toself',
|
291 |
+
name='Quality Factors'
|
292 |
+
))
|
293 |
|
294 |
fig.update_layout(
|
295 |
+
polar=dict(
|
296 |
+
radialaxis=dict(
|
297 |
+
visible=True,
|
298 |
+
range=[0, 1]
|
299 |
+
)),
|
300 |
+
showlegend=True,
|
301 |
+
title="Average Quality Factors"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
)
|
303 |
|
304 |
+
return {
|
305 |
+
'summary': {
|
306 |
+
'average_quality': round(avg_quality, 3),
|
307 |
+
'total_reviews': len(quality_scores),
|
308 |
+
'high_quality_count': sum(1 for item in quality_scores if item['quality_score'] > 0.7),
|
309 |
+
'weights_used': weights
|
310 |
+
},
|
311 |
+
'details': quality_scores,
|
312 |
+
'factor_averages': avg_factors
|
313 |
+
}, fig
|
314 |
+
|
315 |
+
def compare_competitors(self, product_a_reviews: List[str], product_b_reviews: List[str]) -> Tuple[Dict, go.Figure]:
|
316 |
+
"""Compare sentiment between two products"""
|
317 |
+
analysis_a = self.analyze_sentiment(product_a_reviews)
|
318 |
+
analysis_b = self.analyze_sentiment(product_b_reviews)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
+
fig = make_subplots(
|
321 |
+
rows=1, cols=2,
|
322 |
+
specs=[[{'type': 'pie'}, {'type': 'pie'}]],
|
323 |
+
subplot_titles=['Product A', 'Product B']
|
|
|
|
|
324 |
)
|
325 |
|
326 |
+
fig.add_trace(go.Pie(
|
327 |
+
labels=list(analysis_a['summary'].keys()),
|
328 |
+
values=list(analysis_a['summary'].values()),
|
329 |
+
name="Product A"
|
330 |
+
), row=1, col=1)
|
|
|
|
|
|
|
331 |
|
332 |
+
fig.add_trace(go.Pie(
|
333 |
+
labels=list(analysis_b['summary'].keys()),
|
334 |
+
values=list(analysis_b['summary'].values()),
|
335 |
+
name="Product B"
|
336 |
+
), row=1, col=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
+
fig.update_layout(title_text="Sentiment Comparison")
|
|
|
339 |
|
340 |
+
comparison = {
|
341 |
+
'product_a': analysis_a,
|
342 |
+
'product_b': analysis_b,
|
343 |
+
'winner': 'Product A' if analysis_a['summary']['positive'] > analysis_b['summary']['positive'] else 'Product B'
|
344 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
346 |
+
return comparison, fig
|
|
|
347 |
|
348 |
+
def generate_report(self, analysis_data: Dict, report_type: str = "basic") -> str:
|
349 |
+
"""Generate analysis report with export capability"""
|
350 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
|
352 |
+
if report_type == "sentiment":
|
353 |
+
keywords = analysis_data.get('keywords', {})
|
354 |
+
top_pos = keywords.get('top_positive_aspects', [])[:5]
|
355 |
+
top_neg = keywords.get('top_negative_aspects', [])[:5]
|
356 |
+
|
357 |
+
return f"""# Sentiment Analysis Report
|
358 |
+
Generated: {timestamp}
|
359 |
|
360 |
+
## Summary
|
361 |
+
- Total Reviews: {analysis_data.get('total_reviews', 0)}
|
362 |
+
- Positive: {analysis_data.get('summary', {}).get('positive', 0)}%
|
363 |
+
- Negative: {analysis_data.get('summary', {}).get('negative', 0)}%
|
364 |
+
- Neutral: {analysis_data.get('summary', {}).get('neutral', 0)}%
|
365 |
|
366 |
+
## Top Positive Aspects
|
367 |
+
{chr(10).join([f"- {aspect[0]} (mentioned {aspect[1]} times)" for aspect in top_pos])}
|
368 |
+
|
369 |
+
## Top Negative Aspects
|
370 |
+
{chr(10).join([f"- {aspect[0]} (mentioned {aspect[1]} times)" for aspect in top_neg])}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
|
372 |
+
## Key Insights
|
373 |
+
- Overall sentiment: {'Positive' if analysis_data.get('summary', {}).get('positive', 0) > 50 else 'Mixed'}
|
374 |
+
- Main complaints: {', '.join([aspect[0] for aspect in top_neg[:3]])}
|
375 |
+
- Key strengths: {', '.join([aspect[0] for aspect in top_pos[:3]])}
|
376 |
|
377 |
+
## Recommendations
|
378 |
+
- Address negative aspects: {', '.join([aspect[0] for aspect in top_neg[:2]])}
|
379 |
+
- Leverage positive aspects in marketing
|
380 |
+
- Monitor sentiment trends over time
|
381 |
+
"""
|
382 |
+
|
383 |
+
elif report_type == "fake":
|
384 |
+
return f"""# Fake Review Detection Report
|
385 |
+
Generated: {timestamp}
|
386 |
|
387 |
+
## Summary
|
388 |
+
- Total Reviews: {analysis_data.get('summary', {}).get('total_reviews', 0)}
|
389 |
+
- Suspicious Reviews: {analysis_data.get('summary', {}).get('suspicious_reviews', 0)}
|
390 |
+
- Authenticity Rate: {analysis_data.get('summary', {}).get('authenticity_rate', 0)}%
|
391 |
|
392 |
+
## Risk Assessment
|
393 |
+
- Overall Risk: {'High' if analysis_data.get('summary', {}).get('authenticity_rate', 0) < 70 else 'Low'}
|
394 |
+
- Action Required: {'Yes' if analysis_data.get('summary', {}).get('suspicious_reviews', 0) > 0 else 'No'}
|
395 |
|
396 |
+
## Common Fraud Indicators
|
397 |
+
- Short reviews with generic language
|
398 |
+
- Repetitive content patterns
|
399 |
+
- Suspicious timing clusters
|
400 |
+
- Unusual username patterns
|
401 |
+
"""
|
402 |
+
|
403 |
+
return "Report generated successfully"
|
404 |
|
405 |
+
# Global analyzer instance
|
406 |
+
analyzer = ReviewAnalyzer()
|
407 |
+
|
408 |
+
def process_reviews_input(text: str) -> List[str]:
|
409 |
+
"""Process review input text into list"""
|
410 |
+
if not text.strip():
|
411 |
+
return []
|
412 |
+
|
413 |
+
reviews = []
|
414 |
+
for line in text.split('\n'):
|
415 |
+
line = line.strip()
|
416 |
+
if line and len(line) > 10:
|
417 |
+
reviews.append(line)
|
418 |
+
|
419 |
+
return reviews
|
420 |
+
|
421 |
+
def process_csv_upload(file) -> Tuple[List[str], Dict]:
|
422 |
+
"""Process uploaded CSV file"""
|
423 |
+
if file is None:
|
424 |
+
return [], {}
|
425 |
|
426 |
+
try:
|
427 |
+
df = pd.read_csv(file.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
|
429 |
+
# Look for common column names
|
430 |
+
review_col = None
|
431 |
+
time_col = None
|
432 |
+
user_col = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
|
434 |
+
for col in df.columns:
|
435 |
+
col_lower = col.lower()
|
436 |
+
if 'review' in col_lower or 'comment' in col_lower or 'text' in col_lower:
|
437 |
+
review_col = col
|
438 |
+
elif 'time' in col_lower or 'date' in col_lower:
|
439 |
+
time_col = col
|
440 |
+
elif 'user' in col_lower or 'name' in col_lower:
|
441 |
+
user_col = col
|
442 |
|
443 |
+
if review_col is None:
|
444 |
+
return [], {"error": "No review column found. Expected columns: 'review', 'comment', or 'text'"}
|
445 |
|
446 |
+
reviews = df[review_col].dropna().astype(str).tolist()
|
|
|
447 |
|
448 |
+
metadata = {}
|
449 |
+
if time_col:
|
450 |
+
metadata['timestamps'] = df[time_col].dropna().astype(str).tolist()
|
451 |
+
if user_col:
|
452 |
+
metadata['usernames'] = df[user_col].dropna().astype(str).tolist()
|
453 |
|
454 |
+
return reviews, metadata
|
|
|
|
|
|
|
|
|
455 |
|
456 |
+
except Exception as e:
|
457 |
+
return [], {"error": f"Failed to process CSV: {str(e)}"}
|
458 |
+
|
459 |
+
def sentiment_analysis_interface(reviews_text: str, csv_file):
|
460 |
+
"""Interface for sentiment analysis"""
|
461 |
+
reviews = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
|
463 |
+
if csv_file is not None:
|
464 |
+
reviews, metadata = process_csv_upload(csv_file)
|
465 |
+
if 'error' in metadata:
|
466 |
+
return metadata['error'], None
|
467 |
+
else:
|
468 |
+
reviews = process_reviews_input(reviews_text)
|
|
|
|
|
469 |
|
470 |
+
if not reviews:
|
471 |
+
return "Please enter reviews or upload a CSV file.", None
|
|
|
|
|
|
|
|
|
|
|
472 |
|
473 |
+
try:
|
474 |
+
result = analyzer.analyze_sentiment(reviews)
|
|
|
|
|
|
|
|
|
475 |
|
476 |
+
fig = go.Figure(data=[
|
477 |
+
go.Bar(x=list(result['summary'].keys()),
|
478 |
+
y=list(result['summary'].values()),
|
479 |
+
marker_color=['green', 'red', 'gray'])
|
480 |
+
])
|
481 |
+
fig.update_layout(title="Sentiment Distribution", yaxis_title="Percentage")
|
482 |
|
483 |
+
return json.dumps(result, indent=2), fig
|
484 |
+
except Exception as e:
|
485 |
+
return f"Error: {str(e)}", None
|
486 |
+
|
487 |
+
def fake_detection_interface(reviews_text: str, csv_file):
|
488 |
+
"""Interface for fake review detection"""
|
489 |
+
reviews = []
|
490 |
+
metadata = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
|
492 |
+
if csv_file is not None:
|
493 |
+
reviews, metadata = process_csv_upload(csv_file)
|
494 |
+
if 'error' in metadata:
|
495 |
+
return metadata['error']
|
496 |
+
else:
|
497 |
+
reviews = process_reviews_input(reviews_text)
|
498 |
+
|
499 |
+
if not reviews:
|
500 |
+
return "Please enter reviews or upload a CSV file."
|
501 |
+
|
502 |
+
try:
|
503 |
+
result = analyzer.detect_fake_reviews(reviews, metadata if metadata else None)
|
504 |
+
return json.dumps(result, indent=2)
|
505 |
+
except Exception as e:
|
506 |
+
return f"Error: {str(e)}"
|
|
|
|
|
507 |
|
508 |
+
def quality_assessment_interface(reviews_text: str, csv_file, length_weight: float, detail_weight: float, structure_weight: float, help_weight: float):
|
509 |
+
"""Interface for quality assessment with custom weights"""
|
510 |
+
reviews = []
|
|
|
511 |
|
512 |
+
if csv_file is not None:
|
513 |
+
reviews, metadata = process_csv_upload(csv_file)
|
514 |
+
if 'error' in metadata:
|
515 |
+
return metadata['error'], None
|
516 |
+
else:
|
517 |
+
reviews = process_reviews_input(reviews_text)
|
518 |
+
|
519 |
+
if not reviews:
|
520 |
+
return "Please enter reviews or upload a CSV file.", None
|
521 |
+
|
522 |
+
try:
|
523 |
+
custom_weights = {
|
524 |
+
'length': length_weight,
|
525 |
+
'detail': detail_weight,
|
526 |
+
'structure': structure_weight,
|
527 |
+
'helpfulness': help_weight
|
528 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
529 |
|
530 |
+
result, radar_fig = analyzer.assess_quality(reviews, custom_weights)
|
531 |
+
return json.dumps(result, indent=2), radar_fig
|
532 |
+
except Exception as e:
|
533 |
+
return f"Error: {str(e)}", None
|
534 |
+
|
535 |
+
def competitor_comparison_interface(product_a_text: str, product_b_text: str):
|
536 |
+
"""Interface for competitor comparison"""
|
537 |
+
if not product_a_text.strip() or not product_b_text.strip():
|
538 |
+
return "Please enter reviews for both products.", None
|
539 |
+
|
540 |
+
reviews_a = process_reviews_input(product_a_text)
|
541 |
+
reviews_b = process_reviews_input(product_b_text)
|
542 |
+
|
543 |
+
if not reviews_a or not reviews_b:
|
544 |
+
return "Please provide valid reviews for both products.", None
|
545 |
+
|
546 |
+
try:
|
547 |
+
result, fig = analyzer.compare_competitors(reviews_a, reviews_b)
|
548 |
+
return json.dumps(result, indent=2), fig
|
549 |
+
except Exception as e:
|
550 |
+
return f"Error: {str(e)}", None
|
551 |
+
|
552 |
+
def generate_report_interface(analysis_result: str, report_type: str):
|
553 |
+
"""Interface for report generation"""
|
554 |
+
if not analysis_result.strip():
|
555 |
+
return "No analysis data available. Please run an analysis first."
|
556 |
+
|
557 |
+
try:
|
558 |
+
data = json.loads(analysis_result)
|
559 |
+
report = analyzer.generate_report(data, report_type.lower())
|
560 |
+
return report
|
561 |
+
except Exception as e:
|
562 |
+
return f"Error generating report: {str(e)}"
|
563 |
+
|
564 |
+
# Create Gradio interface
|
565 |
+
with gr.Blocks(title="SmartReview Pro", theme=gr.themes.Soft()) as demo:
|
566 |
+
gr.Markdown("# 🛒 SmartReview Pro")
|
567 |
+
gr.Markdown("Advanced review analysis platform with AI-powered insights")
|
568 |
+
|
569 |
+
with gr.Tab("📊 Sentiment Analysis"):
|
570 |
+
gr.Markdown("### Analyze customer sentiment and extract key aspects")
|
571 |
+
with gr.Row():
|
572 |
+
with gr.Column():
|
573 |
+
sentiment_input = gr.Textbox(
|
574 |
+
lines=8,
|
575 |
+
placeholder="Enter reviews (one per line) or upload CSV...",
|
576 |
+
label="Reviews"
|
577 |
+
)
|
578 |
+
sentiment_csv = gr.File(
|
579 |
+
label="Upload CSV (columns: review/comment/text, optional: timestamp, username)",
|
580 |
+
file_types=[".csv"]
|
581 |
+
)
|
582 |
+
sentiment_btn = gr.Button("Analyze Sentiment", variant="primary")
|
583 |
+
with gr.Column():
|
584 |
+
sentiment_output = gr.Textbox(label="Analysis Results", lines=15)
|
585 |
+
sentiment_chart = gr.Plot(label="Sentiment Distribution")
|
586 |
+
|
587 |
+
sentiment_btn.click(
|
588 |
+
sentiment_analysis_interface,
|
589 |
+
inputs=[sentiment_input, sentiment_csv],
|
590 |
+
outputs=[sentiment_output, sentiment_chart]
|
591 |
)
|
592 |
+
|
593 |
+
with gr.Tab("🔍 Fake Review Detection"):
|
594 |
+
gr.Markdown("### Detect suspicious reviews using text analysis and metadata")
|
595 |
+
with gr.Row():
|
596 |
+
with gr.Column():
|
597 |
+
fake_input = gr.Textbox(
|
598 |
+
lines=8,
|
599 |
+
placeholder="Enter reviews to analyze...",
|
600 |
+
label="Reviews"
|
601 |
+
)
|
602 |
+
fake_csv = gr.File(
|
603 |
+
label="Upload CSV (supports timestamp & username analysis)",
|
604 |
+
file_types=[".csv"]
|
605 |
+
)
|
606 |
+
fake_btn = gr.Button("Detect Fake Reviews", variant="primary")
|
607 |
+
with gr.Column():
|
608 |
+
fake_output = gr.Textbox(label="Detection Results", lines=15)
|
609 |
+
|
610 |
+
fake_btn.click(
|
611 |
+
fake_detection_interface,
|
612 |
+
inputs=[fake_input, fake_csv],
|
613 |
+
outputs=[fake_output]
|
614 |
)
|
615 |
+
|
616 |
+
with gr.Tab("⭐ Quality Assessment"):
|
617 |
+
gr.Markdown("### Assess review quality with customizable weights")
|
618 |
+
with gr.Row():
|
619 |
+
with gr.Column():
|
620 |
+
quality_input = gr.Textbox(
|
621 |
+
lines=8,
|
622 |
+
placeholder="Enter reviews to assess...",
|
623 |
+
label="Reviews"
|
624 |
+
)
|
625 |
+
quality_csv = gr.File(
|
626 |
+
label="Upload CSV",
|
627 |
+
file_types=[".csv"]
|
628 |
+
)
|
629 |
+
|
630 |
+
gr.Markdown("**Customize Quality Weights:**")
|
631 |
+
with gr.Row():
|
632 |
+
length_weight = gr.Slider(0, 1, 0.25, label="Length Weight")
|
633 |
+
detail_weight = gr.Slider(0, 1, 0.25, label="Detail Weight")
|
634 |
+
with gr.Row():
|
635 |
+
structure_weight = gr.Slider(0, 1, 0.25, label="Structure Weight")
|
636 |
+
help_weight = gr.Slider(0, 1, 0.25, label="Helpfulness Weight")
|
637 |
+
|
638 |
+
quality_btn = gr.Button("Assess Quality", variant="primary")
|
639 |
+
with gr.Column():
|
640 |
+
quality_output = gr.Textbox(label="Quality Assessment", lines=12)
|
641 |
+
quality_radar = gr.Plot(label="Quality Factors Radar Chart")
|
642 |
+
|
643 |
+
quality_btn.click(
|
644 |
+
quality_assessment_interface,
|
645 |
+
inputs=[quality_input, quality_csv, length_weight, detail_weight, structure_weight, help_weight],
|
646 |
+
outputs=[quality_output, quality_radar]
|
647 |
)
|
648 |
+
|
649 |
+
with gr.Tab("🆚 Competitor Comparison"):
|
650 |
+
gr.Markdown("### Compare sentiment between competing products")
|
651 |
+
with gr.Row():
|
652 |
+
with gr.Column():
|
653 |
+
comp_product_a = gr.Textbox(
|
654 |
+
lines=8,
|
655 |
+
placeholder="Product A reviews...",
|
656 |
+
label="Product A Reviews"
|
657 |
+
)
|
658 |
+
comp_product_b = gr.Textbox(
|
659 |
+
lines=8,
|
660 |
+
placeholder="Product B reviews...",
|
661 |
+
label="Product B Reviews"
|
662 |
+
)
|
663 |
+
comp_btn = gr.Button("Compare Products", variant="primary")
|
664 |
+
with gr.Column():
|
665 |
+
comp_output = gr.Textbox(label="Comparison Results", lines=15)
|
666 |
+
comp_chart = gr.Plot(label="Comparison Chart")
|
667 |
+
|
668 |
+
comp_btn.click(
|
669 |
+
competitor_comparison_interface,
|
670 |
+
inputs=[comp_product_a, comp_product_b],
|
671 |
+
outputs=[comp_output, comp_chart]
|
672 |
)
|
673 |
+
|
674 |
+
with gr.Tab("📋 Report Generation"):
|
675 |
+
gr.Markdown("### Generate professional analysis reports")
|
676 |
+
with gr.Row():
|
677 |
+
with gr.Column():
|
678 |
+
report_data = gr.Textbox(
|
679 |
+
lines=10,
|
680 |
+
placeholder="Paste analysis results here...",
|
681 |
+
label="Analysis Data (JSON)"
|
682 |
+
)
|
683 |
+
report_type = gr.Dropdown(
|
684 |
+
choices=["sentiment", "fake", "quality"],
|
685 |
+
value="sentiment",
|
686 |
+
label="Report Type"
|
687 |
+
)
|
688 |
+
report_btn = gr.Button("Generate Report", variant="primary")
|
689 |
+
with gr.Column():
|
690 |
+
report_output = gr.Textbox(label="Generated Report", lines=15)
|
691 |
+
|
692 |
+
report_btn.click(
|
693 |
+
generate_report_interface,
|
694 |
+
inputs=[report_data, report_type],
|
695 |
+
outputs=[report_output]
|
696 |
)
|
697 |
|
698 |
+
with gr.Tab("ℹ️ About"):
|
699 |
+
gr.Markdown("""
|
700 |
+
## SmartReview Pro Features
|
701 |
+
|
702 |
+
### 🆕 New Features:
|
703 |
+
- **Aspect-Based Sentiment Analysis**: Extract specific aspects customers love/hate
|
704 |
+
- **CSV Batch Processing**: Upload review files for bulk analysis
|
705 |
+
- **Metadata Analysis**: Detect fake reviews using timestamps and usernames
|
706 |
+
- **Customizable Quality Scoring**: Adjust quality factors to your needs
|
707 |
+
- **Advanced Visualizations**: Radar charts and enhanced reporting
|
708 |
+
|
709 |
+
### Core Capabilities:
|
710 |
+
- **Sentiment Analysis**: AI-powered emotion detection with keyword extraction
|
711 |
+
- **Fake Review Detection**: Multi-layer authenticity verification
|
712 |
+
- **Quality Assessment**: Comprehensive review helpfulness scoring
|
713 |
+
- **Competitor Comparison**: Side-by-side sentiment analysis
|
714 |
+
- **Professional Reports**: Detailed insights with actionable recommendations
|
715 |
+
|
716 |
+
### CSV Format:
|
717 |
+
Required columns: `review` or `comment` or `text`
|
718 |
+
Optional columns: `timestamp`, `username` (for enhanced fake detection)
|
719 |
+
|
720 |
+
### Pricing:
|
721 |
+
- **Free**: 50 analyses/day, basic features
|
722 |
+
- **Pro ($299/month)**: Unlimited analyses, CSV upload, custom reports
|
723 |
+
- **Enterprise**: API access, custom models, priority support
|
724 |
+
""")
|
725 |
|
|
|
726 |
if __name__ == "__main__":
|
727 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|