Update app.py
Browse files
app.py
CHANGED
@@ -113,7 +113,7 @@ class ModelManager:
|
|
113 |
model_manager = ModelManager()
|
114 |
|
115 |
class HistoryManager:
|
116 |
-
"""
|
117 |
def __init__(self):
|
118 |
self._history = []
|
119 |
|
@@ -122,9 +122,32 @@ class HistoryManager:
|
|
122 |
if len(self._history) > config.MAX_HISTORY_SIZE:
|
123 |
self._history = self._history[-config.MAX_HISTORY_SIZE:]
|
124 |
|
|
|
|
|
|
|
|
|
|
|
125 |
def get_history(self) -> List[Dict]:
|
126 |
return self._history.copy()
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
def clear(self) -> int:
|
129 |
count = len(self._history)
|
130 |
self._history.clear()
|
@@ -136,13 +159,19 @@ class HistoryManager:
|
|
136 |
|
137 |
sentiments = [item['sentiment'] for item in self._history]
|
138 |
confidences = [item['confidence'] for item in self._history]
|
|
|
139 |
|
140 |
return {
|
141 |
'total_analyses': len(self._history),
|
142 |
'positive_count': sentiments.count('Positive'),
|
143 |
'negative_count': sentiments.count('Negative'),
|
|
|
144 |
'avg_confidence': np.mean(confidences),
|
145 |
-
'
|
|
|
|
|
|
|
|
|
146 |
}
|
147 |
|
148 |
history_manager = HistoryManager()
|
@@ -182,6 +211,12 @@ class TextProcessor:
|
|
182 |
word_freq = Counter(words)
|
183 |
return [word for word, _ in word_freq.most_common(top_k)]
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
class SentimentAnalyzer:
|
186 |
"""Enhanced sentiment analysis"""
|
187 |
|
@@ -262,6 +297,27 @@ class SentimentAnalyzer:
|
|
262 |
logger.error(f"Analysis failed: {e}")
|
263 |
raise
|
264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
class PlotlyVisualizer:
|
266 |
"""Enhanced visualizations with Plotly"""
|
267 |
|
@@ -340,6 +396,55 @@ class PlotlyVisualizer:
|
|
340 |
)
|
341 |
|
342 |
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
@staticmethod
|
345 |
def create_history_dashboard(history: List[Dict]) -> go.Figure:
|
@@ -435,7 +540,8 @@ def analyze_single_text(text: str, language: str, theme: str, clean_text: bool,
|
|
435 |
'neg_prob': result['neg_prob'],
|
436 |
'neu_prob': result.get('neu_prob', 0),
|
437 |
'language': result['language'],
|
438 |
-
'timestamp': datetime.now().isoformat()
|
|
|
439 |
}
|
440 |
history_manager.add_entry(history_entry)
|
441 |
|
@@ -458,20 +564,256 @@ def analyze_single_text(text: str, language: str, theme: str, clean_text: bool,
|
|
458 |
logger.error(f"Analysis failed: {e}")
|
459 |
return f"Error: {str(e)}", None, None
|
460 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
461 |
def get_history_stats():
|
462 |
-
"""Get history statistics"""
|
463 |
stats = history_manager.get_stats()
|
464 |
if not stats:
|
465 |
return "No analysis history available"
|
466 |
|
467 |
return f"""
|
468 |
-
**History Statistics:**
|
|
|
|
|
469 |
- Total Analyses: {stats['total_analyses']}
|
470 |
-
- Positive: {stats['positive_count']}
|
|
|
|
|
|
|
|
|
471 |
- Average Confidence: {stats['avg_confidence']:.3f}
|
|
|
|
|
|
|
|
|
472 |
- Languages Detected: {stats['languages_detected']}
|
|
|
|
|
|
|
|
|
473 |
"""
|
474 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
def plot_history_dashboard():
|
476 |
"""Create history dashboard"""
|
477 |
history = history_manager.get_history()
|
@@ -481,6 +823,20 @@ def plot_history_dashboard():
|
|
481 |
fig = PlotlyVisualizer.create_history_dashboard(history)
|
482 |
return fig, f"Dashboard showing {len(history)} analyses"
|
483 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
def export_history_excel():
|
485 |
"""Export history to Excel"""
|
486 |
history = history_manager.get_history()
|
@@ -500,6 +856,18 @@ def clear_all_history():
|
|
500 |
count = history_manager.clear()
|
501 |
return f"Cleared {count} entries from history"
|
502 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
# Sample data
|
504 |
SAMPLE_TEXTS = [
|
505 |
# Auto Detect
|
@@ -524,11 +892,16 @@ SAMPLE_TEXTS = [
|
|
524 |
["Filmen var en besvikelse β trΓ₯kig handling, ΓΆverdrivet skΓ₯despeleri och ett slut som inte gav nΓ₯got avslut alls."]
|
525 |
]
|
526 |
|
|
|
|
|
|
|
|
|
|
|
527 |
|
528 |
# Gradio Interface
|
529 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="Advanced Sentiment Analyzer") as demo:
|
530 |
-
gr.Markdown("# π Multilingual Sentiment Analyzer")
|
531 |
-
gr.Markdown("
|
532 |
|
533 |
with gr.Tab("π Single Analysis"):
|
534 |
with gr.Row():
|
@@ -541,7 +914,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Advanced Sentiment Analyzer") as d
|
|
541 |
|
542 |
with gr.Row():
|
543 |
language_select = gr.Dropdown(
|
544 |
-
choices=['Auto Detect', 'English', 'Chinese', 'Spanish', 'French', 'German'],
|
545 |
value='Auto Detect',
|
546 |
label="Language"
|
547 |
)
|
@@ -571,37 +944,201 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Advanced Sentiment Analyzer") as d
|
|
571 |
gauge_plot = gr.Plot(label="Sentiment Gauge")
|
572 |
bars_plot = gr.Plot(label="Probability Distribution")
|
573 |
|
574 |
-
with gr.Tab("π
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
575 |
with gr.Row():
|
576 |
-
stats_btn = gr.Button("π Get Statistics")
|
577 |
dashboard_btn = gr.Button("π View Dashboard")
|
578 |
clear_btn = gr.Button("ποΈ Clear History", variant="stop")
|
579 |
|
580 |
with gr.Row():
|
581 |
-
|
|
|
582 |
|
583 |
-
stats_output = gr.Markdown("Click 'Get Statistics' to view analysis history")
|
584 |
dashboard_plot = gr.Plot(label="Analytics Dashboard")
|
|
|
|
|
|
|
|
|
|
|
|
|
585 |
excel_file = gr.File(label="Download Excel Report")
|
586 |
history_status = gr.Textbox(label="Status", interactive=False)
|
587 |
|
588 |
# Event handlers
|
|
|
|
|
589 |
analyze_btn.click(
|
590 |
analyze_single_text,
|
591 |
inputs=[text_input, language_select, theme_select, clean_text, remove_punct, remove_nums],
|
592 |
outputs=[result_info, gauge_plot, bars_plot]
|
593 |
)
|
594 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
595 |
stats_btn.click(
|
596 |
get_history_stats,
|
597 |
outputs=stats_output
|
598 |
)
|
599 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
600 |
dashboard_btn.click(
|
601 |
plot_history_dashboard,
|
602 |
outputs=[dashboard_plot, history_status]
|
603 |
)
|
604 |
|
|
|
|
|
|
|
|
|
|
|
605 |
export_excel_btn.click(
|
606 |
export_history_excel,
|
607 |
outputs=[excel_file, history_status]
|
|
|
113 |
model_manager = ModelManager()
|
114 |
|
115 |
class HistoryManager:
|
116 |
+
"""Enhanced history manager with more features"""
|
117 |
def __init__(self):
|
118 |
self._history = []
|
119 |
|
|
|
122 |
if len(self._history) > config.MAX_HISTORY_SIZE:
|
123 |
self._history = self._history[-config.MAX_HISTORY_SIZE:]
|
124 |
|
125 |
+
def add_batch_entries(self, entries: List[Dict]):
|
126 |
+
"""Add multiple entries at once"""
|
127 |
+
for entry in entries:
|
128 |
+
self.add_entry(entry)
|
129 |
+
|
130 |
def get_history(self) -> List[Dict]:
|
131 |
return self._history.copy()
|
132 |
|
133 |
+
def get_recent_history(self, n: int = 10) -> List[Dict]:
|
134 |
+
"""Get n most recent entries"""
|
135 |
+
return self._history[-n:] if self._history else []
|
136 |
+
|
137 |
+
def filter_history(self, sentiment: str = None, language: str = None,
|
138 |
+
min_confidence: float = None) -> List[Dict]:
|
139 |
+
"""Filter history by criteria"""
|
140 |
+
filtered = self._history
|
141 |
+
|
142 |
+
if sentiment:
|
143 |
+
filtered = [h for h in filtered if h['sentiment'] == sentiment]
|
144 |
+
if language:
|
145 |
+
filtered = [h for h in filtered if h.get('language', 'en') == language]
|
146 |
+
if min_confidence:
|
147 |
+
filtered = [h for h in filtered if h['confidence'] >= min_confidence]
|
148 |
+
|
149 |
+
return filtered
|
150 |
+
|
151 |
def clear(self) -> int:
|
152 |
count = len(self._history)
|
153 |
self._history.clear()
|
|
|
159 |
|
160 |
sentiments = [item['sentiment'] for item in self._history]
|
161 |
confidences = [item['confidence'] for item in self._history]
|
162 |
+
languages = [item.get('language', 'en') for item in self._history]
|
163 |
|
164 |
return {
|
165 |
'total_analyses': len(self._history),
|
166 |
'positive_count': sentiments.count('Positive'),
|
167 |
'negative_count': sentiments.count('Negative'),
|
168 |
+
'neutral_count': sentiments.count('Neutral'),
|
169 |
'avg_confidence': np.mean(confidences),
|
170 |
+
'max_confidence': np.max(confidences),
|
171 |
+
'min_confidence': np.min(confidences),
|
172 |
+
'languages_detected': len(set(languages)),
|
173 |
+
'most_common_language': Counter(languages).most_common(1)[0][0] if languages else 'en',
|
174 |
+
'avg_text_length': np.mean([len(item.get('full_text', '')) for item in self._history])
|
175 |
}
|
176 |
|
177 |
history_manager = HistoryManager()
|
|
|
211 |
word_freq = Counter(words)
|
212 |
return [word for word, _ in word_freq.most_common(top_k)]
|
213 |
|
214 |
+
@staticmethod
|
215 |
+
def parse_batch_input(text: str) -> List[str]:
|
216 |
+
"""Parse batch input from textarea"""
|
217 |
+
lines = text.strip().split('\n')
|
218 |
+
return [line.strip() for line in lines if line.strip()]
|
219 |
+
|
220 |
class SentimentAnalyzer:
|
221 |
"""Enhanced sentiment analysis"""
|
222 |
|
|
|
297 |
logger.error(f"Analysis failed: {e}")
|
298 |
raise
|
299 |
|
300 |
+
@staticmethod
|
301 |
+
def analyze_batch(texts: List[str], language: str = 'auto',
|
302 |
+
preprocessing_options: Dict = None) -> List[Dict]:
|
303 |
+
"""Analyze multiple texts"""
|
304 |
+
results = []
|
305 |
+
for i, text in enumerate(texts):
|
306 |
+
try:
|
307 |
+
result = SentimentAnalyzer.analyze_text(text, language, preprocessing_options)
|
308 |
+
result['batch_index'] = i
|
309 |
+
results.append(result)
|
310 |
+
except Exception as e:
|
311 |
+
# Add error result
|
312 |
+
results.append({
|
313 |
+
'sentiment': 'Error',
|
314 |
+
'confidence': 0.0,
|
315 |
+
'error': str(e),
|
316 |
+
'batch_index': i,
|
317 |
+
'text': text
|
318 |
+
})
|
319 |
+
return results
|
320 |
+
|
321 |
class PlotlyVisualizer:
|
322 |
"""Enhanced visualizations with Plotly"""
|
323 |
|
|
|
396 |
)
|
397 |
|
398 |
return fig
|
399 |
+
|
400 |
+
@staticmethod
|
401 |
+
def create_batch_summary(results: List[Dict], theme: str = 'default') -> go.Figure:
|
402 |
+
"""Create batch analysis summary"""
|
403 |
+
colors = config.THEMES[theme]
|
404 |
+
|
405 |
+
# Count sentiments
|
406 |
+
sentiments = [r['sentiment'] for r in results if 'sentiment' in r]
|
407 |
+
sentiment_counts = Counter(sentiments)
|
408 |
+
|
409 |
+
# Create pie chart
|
410 |
+
fig = go.Figure(data=[go.Pie(
|
411 |
+
labels=list(sentiment_counts.keys()),
|
412 |
+
values=list(sentiment_counts.values()),
|
413 |
+
marker_colors=[colors.get(s.lower()[:3], '#999999') for s in sentiment_counts.keys()],
|
414 |
+
textinfo='label+percent',
|
415 |
+
hole=0.3
|
416 |
+
)])
|
417 |
+
|
418 |
+
fig.update_layout(
|
419 |
+
title=f"Batch Analysis Summary ({len(results)} texts)",
|
420 |
+
height=400
|
421 |
+
)
|
422 |
+
|
423 |
+
return fig
|
424 |
+
|
425 |
+
@staticmethod
|
426 |
+
def create_confidence_distribution(results: List[Dict]) -> go.Figure:
|
427 |
+
"""Create confidence distribution plot"""
|
428 |
+
confidences = [r['confidence'] for r in results if 'confidence' in r and r['sentiment'] != 'Error']
|
429 |
+
|
430 |
+
if not confidences:
|
431 |
+
return go.Figure()
|
432 |
+
|
433 |
+
fig = go.Figure(data=[go.Histogram(
|
434 |
+
x=confidences,
|
435 |
+
nbinsx=20,
|
436 |
+
marker_color='skyblue',
|
437 |
+
opacity=0.7
|
438 |
+
)])
|
439 |
+
|
440 |
+
fig.update_layout(
|
441 |
+
title="Confidence Distribution",
|
442 |
+
xaxis_title="Confidence Score",
|
443 |
+
yaxis_title="Frequency",
|
444 |
+
height=400
|
445 |
+
)
|
446 |
+
|
447 |
+
return fig
|
448 |
|
449 |
@staticmethod
|
450 |
def create_history_dashboard(history: List[Dict]) -> go.Figure:
|
|
|
540 |
'neg_prob': result['neg_prob'],
|
541 |
'neu_prob': result.get('neu_prob', 0),
|
542 |
'language': result['language'],
|
543 |
+
'timestamp': datetime.now().isoformat(),
|
544 |
+
'analysis_type': 'single'
|
545 |
}
|
546 |
history_manager.add_entry(history_entry)
|
547 |
|
|
|
564 |
logger.error(f"Analysis failed: {e}")
|
565 |
return f"Error: {str(e)}", None, None
|
566 |
|
567 |
+
def analyze_batch_texts(batch_text: str, language: str, theme: str,
|
568 |
+
clean_text: bool, remove_punct: bool, remove_nums: bool):
|
569 |
+
"""Batch text analysis"""
|
570 |
+
try:
|
571 |
+
if not batch_text.strip():
|
572 |
+
return "Please enter texts (one per line)", None, None, None
|
573 |
+
|
574 |
+
# Parse batch input
|
575 |
+
texts = TextProcessor.parse_batch_input(batch_text)
|
576 |
+
|
577 |
+
if len(texts) > config.BATCH_SIZE_LIMIT:
|
578 |
+
return f"Too many texts. Maximum {config.BATCH_SIZE_LIMIT} allowed.", None, None, None
|
579 |
+
|
580 |
+
if not texts:
|
581 |
+
return "No valid texts found", None, None, None
|
582 |
+
|
583 |
+
# Map display names back to language codes
|
584 |
+
language_map = {
|
585 |
+
'Auto Detect': 'auto',
|
586 |
+
'English': 'en',
|
587 |
+
'Chinese': 'zh',
|
588 |
+
'Spanish': 'es',
|
589 |
+
'French': 'fr',
|
590 |
+
'German': 'de',
|
591 |
+
'Swedish': 'sv'
|
592 |
+
}
|
593 |
+
language_code = language_map.get(language, 'auto')
|
594 |
+
|
595 |
+
preprocessing_options = {
|
596 |
+
'clean_text': clean_text,
|
597 |
+
'remove_punctuation': remove_punct,
|
598 |
+
'remove_numbers': remove_nums
|
599 |
+
}
|
600 |
+
|
601 |
+
# Analyze all texts
|
602 |
+
results = SentimentAnalyzer.analyze_batch(texts, language_code, preprocessing_options)
|
603 |
+
|
604 |
+
# Add to history
|
605 |
+
batch_entries = []
|
606 |
+
for i, (text, result) in enumerate(zip(texts, results)):
|
607 |
+
if 'error' not in result:
|
608 |
+
entry = {
|
609 |
+
'text': text[:100] + '...' if len(text) > 100 else text,
|
610 |
+
'full_text': text,
|
611 |
+
'sentiment': result['sentiment'],
|
612 |
+
'confidence': result['confidence'],
|
613 |
+
'pos_prob': result['pos_prob'],
|
614 |
+
'neg_prob': result['neg_prob'],
|
615 |
+
'neu_prob': result.get('neu_prob', 0),
|
616 |
+
'language': result['language'],
|
617 |
+
'timestamp': datetime.now().isoformat(),
|
618 |
+
'analysis_type': 'batch',
|
619 |
+
'batch_index': i
|
620 |
+
}
|
621 |
+
batch_entries.append(entry)
|
622 |
+
|
623 |
+
history_manager.add_batch_entries(batch_entries)
|
624 |
+
|
625 |
+
# Create visualizations
|
626 |
+
summary_fig = PlotlyVisualizer.create_batch_summary(results, theme)
|
627 |
+
confidence_fig = PlotlyVisualizer.create_confidence_distribution(results)
|
628 |
+
|
629 |
+
# Create results table
|
630 |
+
df_data = []
|
631 |
+
for i, (text, result) in enumerate(zip(texts, results)):
|
632 |
+
if 'error' in result:
|
633 |
+
df_data.append({
|
634 |
+
'Index': i+1,
|
635 |
+
'Text': text[:50] + '...' if len(text) > 50 else text,
|
636 |
+
'Sentiment': 'Error',
|
637 |
+
'Confidence': 0.0,
|
638 |
+
'Language': 'Unknown',
|
639 |
+
'Error': result['error']
|
640 |
+
})
|
641 |
+
else:
|
642 |
+
df_data.append({
|
643 |
+
'Index': i+1,
|
644 |
+
'Text': text[:50] + '...' if len(text) > 50 else text,
|
645 |
+
'Sentiment': result['sentiment'],
|
646 |
+
'Confidence': f"{result['confidence']:.3f}",
|
647 |
+
'Language': result['language'].upper(),
|
648 |
+
'Keywords': ', '.join(result['keywords'][:3])
|
649 |
+
})
|
650 |
+
|
651 |
+
df = pd.DataFrame(df_data)
|
652 |
+
|
653 |
+
# Summary info
|
654 |
+
successful_results = [r for r in results if 'error' not in r]
|
655 |
+
error_count = len(results) - len(successful_results)
|
656 |
+
|
657 |
+
if successful_results:
|
658 |
+
sentiment_counts = Counter([r['sentiment'] for r in successful_results])
|
659 |
+
avg_confidence = np.mean([r['confidence'] for r in successful_results])
|
660 |
+
|
661 |
+
summary_text = f"""
|
662 |
+
**Batch Analysis Summary:**
|
663 |
+
- **Total Texts:** {len(texts)}
|
664 |
+
- **Successful:** {len(successful_results)}
|
665 |
+
- **Errors:** {error_count}
|
666 |
+
- **Average Confidence:** {avg_confidence:.3f}
|
667 |
+
- **Sentiments:** {dict(sentiment_counts)}
|
668 |
+
"""
|
669 |
+
else:
|
670 |
+
summary_text = f"All {len(texts)} texts failed to analyze."
|
671 |
+
|
672 |
+
return summary_text, df, summary_fig, confidence_fig
|
673 |
+
|
674 |
+
except Exception as e:
|
675 |
+
logger.error(f"Batch analysis failed: {e}")
|
676 |
+
return f"Error: {str(e)}", None, None, None
|
677 |
+
|
678 |
+
def analyze_advanced_text(text: str, language: str, theme: str, include_keywords: bool,
|
679 |
+
keyword_count: int, min_confidence: float):
|
680 |
+
"""Advanced analysis with additional features"""
|
681 |
+
try:
|
682 |
+
if not text.strip():
|
683 |
+
return "Please enter text", None, None
|
684 |
+
|
685 |
+
# Map display names back to language codes
|
686 |
+
language_map = {
|
687 |
+
'Auto Detect': 'auto',
|
688 |
+
'English': 'en',
|
689 |
+
'Chinese': 'zh',
|
690 |
+
'Spanish': 'es',
|
691 |
+
'French': 'fr',
|
692 |
+
'German': 'de',
|
693 |
+
'Swedish': 'sv'
|
694 |
+
}
|
695 |
+
language_code = language_map.get(language, 'auto')
|
696 |
+
|
697 |
+
result = SentimentAnalyzer.analyze_text(text, language_code)
|
698 |
+
|
699 |
+
# Advanced keyword extraction
|
700 |
+
if include_keywords:
|
701 |
+
result['keywords'] = TextProcessor.extract_keywords(text, keyword_count)
|
702 |
+
|
703 |
+
# Confidence filtering
|
704 |
+
meets_confidence = result['confidence'] >= min_confidence
|
705 |
+
|
706 |
+
# Add to history
|
707 |
+
history_entry = {
|
708 |
+
'text': text[:100] + '...' if len(text) > 100 else text,
|
709 |
+
'full_text': text,
|
710 |
+
'sentiment': result['sentiment'],
|
711 |
+
'confidence': result['confidence'],
|
712 |
+
'pos_prob': result['pos_prob'],
|
713 |
+
'neg_prob': result['neg_prob'],
|
714 |
+
'neu_prob': result.get('neu_prob', 0),
|
715 |
+
'language': result['language'],
|
716 |
+
'timestamp': datetime.now().isoformat(),
|
717 |
+
'analysis_type': 'advanced',
|
718 |
+
'meets_confidence_threshold': meets_confidence
|
719 |
+
}
|
720 |
+
history_manager.add_entry(history_entry)
|
721 |
+
|
722 |
+
# Create visualizations
|
723 |
+
gauge_fig = PlotlyVisualizer.create_sentiment_gauge(result, theme)
|
724 |
+
bars_fig = PlotlyVisualizer.create_probability_bars(result, theme)
|
725 |
+
|
726 |
+
# Create detailed info text
|
727 |
+
confidence_status = "β
High Confidence" if meets_confidence else "β οΈ Low Confidence"
|
728 |
+
|
729 |
+
info_text = f"""
|
730 |
+
**Advanced Analysis Results:**
|
731 |
+
- **Sentiment:** {result['sentiment']} ({result['confidence']:.3f} confidence)
|
732 |
+
- **Confidence Status:** {confidence_status}
|
733 |
+
- **Language:** {result['language'].upper()}
|
734 |
+
- **Text Statistics:**
|
735 |
+
- Words: {result['word_count']}
|
736 |
+
- Characters: {result['char_count']}
|
737 |
+
- Average word length: {result['char_count']/max(result['word_count'], 1):.1f}
|
738 |
+
"""
|
739 |
+
|
740 |
+
if include_keywords:
|
741 |
+
info_text += f"\n- **Top Keywords:** {', '.join(result['keywords'])}"
|
742 |
+
|
743 |
+
if not meets_confidence:
|
744 |
+
info_text += f"\n\nβ οΈ **Note:** Confidence ({result['confidence']:.3f}) is below threshold ({min_confidence})"
|
745 |
+
|
746 |
+
return info_text, gauge_fig, bars_fig
|
747 |
+
|
748 |
+
except Exception as e:
|
749 |
+
logger.error(f"Advanced analysis failed: {e}")
|
750 |
+
return f"Error: {str(e)}", None, None
|
751 |
+
|
752 |
def get_history_stats():
|
753 |
+
"""Get enhanced history statistics"""
|
754 |
stats = history_manager.get_stats()
|
755 |
if not stats:
|
756 |
return "No analysis history available"
|
757 |
|
758 |
return f"""
|
759 |
+
**Comprehensive History Statistics:**
|
760 |
+
|
761 |
+
**Analysis Counts:**
|
762 |
- Total Analyses: {stats['total_analyses']}
|
763 |
+
- Positive: {stats['positive_count']}
|
764 |
+
- Negative: {stats['negative_count']}
|
765 |
+
- Neutral: {stats['neutral_count']}
|
766 |
+
|
767 |
+
**Confidence Metrics:**
|
768 |
- Average Confidence: {stats['avg_confidence']:.3f}
|
769 |
+
- Highest Confidence: {stats['max_confidence']:.3f}
|
770 |
+
- Lowest Confidence: {stats['min_confidence']:.3f}
|
771 |
+
|
772 |
+
**Language Statistics:**
|
773 |
- Languages Detected: {stats['languages_detected']}
|
774 |
+
- Most Common Language: {stats['most_common_language'].upper()}
|
775 |
+
|
776 |
+
**Text Statistics:**
|
777 |
+
- Average Text Length: {stats['avg_text_length']:.1f} characters
|
778 |
"""
|
779 |
|
780 |
+
def filter_history_display(sentiment_filter: str, language_filter: str, min_confidence: float):
|
781 |
+
"""Display filtered history"""
|
782 |
+
# Convert filters
|
783 |
+
sentiment = sentiment_filter if sentiment_filter != "All" else None
|
784 |
+
language = language_filter.lower() if language_filter != "All" else None
|
785 |
+
|
786 |
+
filtered_history = history_manager.filter_history(
|
787 |
+
sentiment=sentiment,
|
788 |
+
language=language,
|
789 |
+
min_confidence=min_confidence if min_confidence > 0 else None
|
790 |
+
)
|
791 |
+
|
792 |
+
if not filtered_history:
|
793 |
+
return "No entries match the filter criteria", None
|
794 |
+
|
795 |
+
# Create DataFrame for display
|
796 |
+
df_data = []
|
797 |
+
for entry in filtered_history[-20:]: # Show last 20 entries
|
798 |
+
df_data.append({
|
799 |
+
'Timestamp': entry['timestamp'][:16], # YYYY-MM-DD HH:MM
|
800 |
+
'Text': entry['text'],
|
801 |
+
'Sentiment': entry['sentiment'],
|
802 |
+
'Confidence': f"{entry['confidence']:.3f}",
|
803 |
+
'Language': entry['language'].upper(),
|
804 |
+
'Type': entry.get('analysis_type', 'single')
|
805 |
+
})
|
806 |
+
|
807 |
+
df = pd.DataFrame(df_data)
|
808 |
+
|
809 |
+
summary = f"""
|
810 |
+
**Filtered Results:**
|
811 |
+
- Found {len(filtered_history)} entries matching criteria
|
812 |
+
- Showing most recent {min(20, len(filtered_history))} entries
|
813 |
+
"""
|
814 |
+
|
815 |
+
return summary, df
|
816 |
+
|
817 |
def plot_history_dashboard():
|
818 |
"""Create history dashboard"""
|
819 |
history = history_manager.get_history()
|
|
|
823 |
fig = PlotlyVisualizer.create_history_dashboard(history)
|
824 |
return fig, f"Dashboard showing {len(history)} analyses"
|
825 |
|
826 |
+
def export_history_csv():
|
827 |
+
"""Export history to CSV"""
|
828 |
+
history = history_manager.get_history()
|
829 |
+
if not history:
|
830 |
+
return None, "No history to export"
|
831 |
+
|
832 |
+
try:
|
833 |
+
df = pd.DataFrame(history)
|
834 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv', mode='w')
|
835 |
+
df.to_csv(temp_file.name, index=False)
|
836 |
+
return temp_file.name, f"Exported {len(history)} entries to CSV"
|
837 |
+
except Exception as e:
|
838 |
+
return None, f"Export failed: {str(e)}"
|
839 |
+
|
840 |
def export_history_excel():
|
841 |
"""Export history to Excel"""
|
842 |
history = history_manager.get_history()
|
|
|
856 |
count = history_manager.clear()
|
857 |
return f"Cleared {count} entries from history"
|
858 |
|
859 |
+
def get_recent_analyses():
|
860 |
+
"""Get recent analysis summary"""
|
861 |
+
recent = history_manager.get_recent_history(10)
|
862 |
+
if not recent:
|
863 |
+
return "No recent analyses available"
|
864 |
+
|
865 |
+
summary_text = "**Recent Analyses (Last 10):**\n\n"
|
866 |
+
for i, entry in enumerate(recent, 1):
|
867 |
+
summary_text += f"{i}. **{entry['sentiment']}** ({entry['confidence']:.3f}) - {entry['text']}\n"
|
868 |
+
|
869 |
+
return summary_text
|
870 |
+
|
871 |
# Sample data
|
872 |
SAMPLE_TEXTS = [
|
873 |
# Auto Detect
|
|
|
892 |
["Filmen var en besvikelse β trΓ₯kig handling, ΓΆverdrivet skΓ₯despeleri och ett slut som inte gav nΓ₯got avslut alls."]
|
893 |
]
|
894 |
|
895 |
+
BATCH_SAMPLE = """I love this product! It works perfectly.
|
896 |
+
The service was terrible and slow.
|
897 |
+
Not sure if I like it or not.
|
898 |
+
Amazing quality and fast delivery!
|
899 |
+
Could be better, but it's okay."""
|
900 |
|
901 |
# Gradio Interface
|
902 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Advanced Multilingual Sentiment Analyzer") as demo:
|
903 |
+
gr.Markdown("# π Advanced Multilingual Sentiment Analyzer")
|
904 |
+
gr.Markdown("Comprehensive sentiment analysis with batch processing, advanced analytics, and multilingual support")
|
905 |
|
906 |
with gr.Tab("π Single Analysis"):
|
907 |
with gr.Row():
|
|
|
914 |
|
915 |
with gr.Row():
|
916 |
language_select = gr.Dropdown(
|
917 |
+
choices=['Auto Detect', 'English', 'Chinese', 'Spanish', 'French', 'German', 'Swedish'],
|
918 |
value='Auto Detect',
|
919 |
label="Language"
|
920 |
)
|
|
|
944 |
gauge_plot = gr.Plot(label="Sentiment Gauge")
|
945 |
bars_plot = gr.Plot(label="Probability Distribution")
|
946 |
|
947 |
+
with gr.Tab("π Batch Analysis"):
|
948 |
+
with gr.Row():
|
949 |
+
with gr.Column(scale=2):
|
950 |
+
batch_input = gr.Textbox(
|
951 |
+
label="Batch Text Input (One text per line)",
|
952 |
+
placeholder="Enter multiple texts, one per line...",
|
953 |
+
lines=8
|
954 |
+
)
|
955 |
+
|
956 |
+
with gr.Row():
|
957 |
+
batch_language = gr.Dropdown(
|
958 |
+
choices=['Auto Detect', 'English', 'Chinese', 'Spanish', 'French', 'German', 'Swedish'],
|
959 |
+
value='Auto Detect',
|
960 |
+
label="Language"
|
961 |
+
)
|
962 |
+
batch_theme = gr.Dropdown(
|
963 |
+
choices=list(config.THEMES.keys()),
|
964 |
+
value='default',
|
965 |
+
label="Theme"
|
966 |
+
)
|
967 |
+
|
968 |
+
with gr.Row():
|
969 |
+
batch_clean = gr.Checkbox(label="Clean Text", value=False)
|
970 |
+
batch_remove_punct = gr.Checkbox(label="Remove Punctuation", value=True)
|
971 |
+
batch_remove_nums = gr.Checkbox(label="Remove Numbers", value=False)
|
972 |
+
|
973 |
+
batch_analyze_btn = gr.Button("π Analyze Batch", variant="primary", size="lg")
|
974 |
+
|
975 |
+
gr.Examples(
|
976 |
+
examples=[[BATCH_SAMPLE]],
|
977 |
+
inputs=batch_input,
|
978 |
+
label="Sample Batch Input"
|
979 |
+
)
|
980 |
+
|
981 |
+
with gr.Column(scale=1):
|
982 |
+
batch_summary = gr.Markdown("Enter texts and click Analyze Batch")
|
983 |
+
|
984 |
+
with gr.Row():
|
985 |
+
batch_results_table = gr.DataFrame(
|
986 |
+
label="Detailed Results",
|
987 |
+
interactive=False
|
988 |
+
)
|
989 |
+
|
990 |
+
with gr.Row():
|
991 |
+
batch_summary_plot = gr.Plot(label="Sentiment Summary")
|
992 |
+
batch_confidence_plot = gr.Plot(label="Confidence Distribution")
|
993 |
+
|
994 |
+
with gr.Tab("π¬ Advanced Analysis"):
|
995 |
+
with gr.Row():
|
996 |
+
with gr.Column(scale=2):
|
997 |
+
advanced_input = gr.Textbox(
|
998 |
+
label="Text for Advanced Analysis",
|
999 |
+
placeholder="Enter text for detailed analysis...",
|
1000 |
+
lines=4
|
1001 |
+
)
|
1002 |
+
|
1003 |
+
with gr.Row():
|
1004 |
+
advanced_language = gr.Dropdown(
|
1005 |
+
choices=['Auto Detect', 'English', 'Chinese', 'Spanish', 'French', 'German', 'Swedish'],
|
1006 |
+
value='Auto Detect',
|
1007 |
+
label="Language"
|
1008 |
+
)
|
1009 |
+
advanced_theme = gr.Dropdown(
|
1010 |
+
choices=list(config.THEMES.keys()),
|
1011 |
+
value='default',
|
1012 |
+
label="Theme"
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
with gr.Row():
|
1016 |
+
include_keywords = gr.Checkbox(label="Extract Keywords", value=True)
|
1017 |
+
keyword_count = gr.Slider(
|
1018 |
+
minimum=3,
|
1019 |
+
maximum=10,
|
1020 |
+
value=5,
|
1021 |
+
step=1,
|
1022 |
+
label="Number of Keywords"
|
1023 |
+
)
|
1024 |
+
|
1025 |
+
min_confidence_slider = gr.Slider(
|
1026 |
+
minimum=0.0,
|
1027 |
+
maximum=1.0,
|
1028 |
+
value=0.7,
|
1029 |
+
step=0.1,
|
1030 |
+
label="Minimum Confidence Threshold"
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
advanced_analyze_btn = gr.Button("π¬ Advanced Analyze", variant="primary", size="lg")
|
1034 |
+
|
1035 |
+
with gr.Column(scale=1):
|
1036 |
+
advanced_result_info = gr.Markdown("Configure settings and click Advanced Analyze")
|
1037 |
+
|
1038 |
+
with gr.Row():
|
1039 |
+
advanced_gauge_plot = gr.Plot(label="Sentiment Gauge")
|
1040 |
+
advanced_bars_plot = gr.Plot(label="Probability Distribution")
|
1041 |
+
|
1042 |
+
with gr.Tab("π History & Analytics"):
|
1043 |
+
with gr.Row():
|
1044 |
+
with gr.Column():
|
1045 |
+
gr.Markdown("### π Statistics")
|
1046 |
+
stats_btn = gr.Button("π Get Statistics")
|
1047 |
+
recent_btn = gr.Button("π Recent Analyses")
|
1048 |
+
stats_output = gr.Markdown("Click 'Get Statistics' to view analysis history")
|
1049 |
+
|
1050 |
+
with gr.Column():
|
1051 |
+
gr.Markdown("### π Filter History")
|
1052 |
+
with gr.Row():
|
1053 |
+
sentiment_filter = gr.Dropdown(
|
1054 |
+
choices=["All", "Positive", "Negative", "Neutral"],
|
1055 |
+
value="All",
|
1056 |
+
label="Filter by Sentiment"
|
1057 |
+
)
|
1058 |
+
language_filter = gr.Dropdown(
|
1059 |
+
choices=["All", "English", "Chinese", "Spanish", "French", "German", "Swedish"],
|
1060 |
+
value="All",
|
1061 |
+
label="Filter by Language"
|
1062 |
+
)
|
1063 |
+
|
1064 |
+
confidence_filter = gr.Slider(
|
1065 |
+
minimum=0.0,
|
1066 |
+
maximum=1.0,
|
1067 |
+
value=0.0,
|
1068 |
+
step=0.1,
|
1069 |
+
label="Minimum Confidence"
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
filter_btn = gr.Button("π Filter History")
|
1073 |
+
|
1074 |
with gr.Row():
|
|
|
1075 |
dashboard_btn = gr.Button("π View Dashboard")
|
1076 |
clear_btn = gr.Button("ποΈ Clear History", variant="stop")
|
1077 |
|
1078 |
with gr.Row():
|
1079 |
+
export_csv_btn = gr.Button("π Export CSV")
|
1080 |
+
export_excel_btn = gr.Button("π Export Excel")
|
1081 |
|
|
|
1082 |
dashboard_plot = gr.Plot(label="Analytics Dashboard")
|
1083 |
+
|
1084 |
+
with gr.Row():
|
1085 |
+
filtered_results = gr.Markdown("Use filters to view specific entries")
|
1086 |
+
filtered_table = gr.DataFrame(label="Filtered History", interactive=False)
|
1087 |
+
|
1088 |
+
csv_file = gr.File(label="Download CSV Report")
|
1089 |
excel_file = gr.File(label="Download Excel Report")
|
1090 |
history_status = gr.Textbox(label="Status", interactive=False)
|
1091 |
|
1092 |
# Event handlers
|
1093 |
+
|
1094 |
+
# Single Analysis
|
1095 |
analyze_btn.click(
|
1096 |
analyze_single_text,
|
1097 |
inputs=[text_input, language_select, theme_select, clean_text, remove_punct, remove_nums],
|
1098 |
outputs=[result_info, gauge_plot, bars_plot]
|
1099 |
)
|
1100 |
|
1101 |
+
# Batch Analysis
|
1102 |
+
batch_analyze_btn.click(
|
1103 |
+
analyze_batch_texts,
|
1104 |
+
inputs=[batch_input, batch_language, batch_theme, batch_clean, batch_remove_punct, batch_remove_nums],
|
1105 |
+
outputs=[batch_summary, batch_results_table, batch_summary_plot, batch_confidence_plot]
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
# Advanced Analysis
|
1109 |
+
advanced_analyze_btn.click(
|
1110 |
+
analyze_advanced_text,
|
1111 |
+
inputs=[advanced_input, advanced_language, advanced_theme, include_keywords, keyword_count, min_confidence_slider],
|
1112 |
+
outputs=[advanced_result_info, advanced_gauge_plot, advanced_bars_plot]
|
1113 |
+
)
|
1114 |
+
|
1115 |
+
# History & Analytics
|
1116 |
stats_btn.click(
|
1117 |
get_history_stats,
|
1118 |
outputs=stats_output
|
1119 |
)
|
1120 |
|
1121 |
+
recent_btn.click(
|
1122 |
+
get_recent_analyses,
|
1123 |
+
outputs=stats_output
|
1124 |
+
)
|
1125 |
+
|
1126 |
+
filter_btn.click(
|
1127 |
+
filter_history_display,
|
1128 |
+
inputs=[sentiment_filter, language_filter, confidence_filter],
|
1129 |
+
outputs=[filtered_results, filtered_table]
|
1130 |
+
)
|
1131 |
+
|
1132 |
dashboard_btn.click(
|
1133 |
plot_history_dashboard,
|
1134 |
outputs=[dashboard_plot, history_status]
|
1135 |
)
|
1136 |
|
1137 |
+
export_csv_btn.click(
|
1138 |
+
export_history_csv,
|
1139 |
+
outputs=[csv_file, history_status]
|
1140 |
+
)
|
1141 |
+
|
1142 |
export_excel_btn.click(
|
1143 |
export_history_excel,
|
1144 |
outputs=[excel_file, history_status]
|