File size: 6,195 Bytes
ecce323
 
34f5d81
 
7a9ce47
 
34f5d81
 
ecce323
 
 
2d23a8b
 
 
7a9ce47
 
 
 
 
 
 
ecce323
 
 
 
 
7a9ce47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d23a8b
 
7a9ce47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d23a8b
 
 
 
 
7a9ce47
2d23a8b
7a9ce47
 
2d23a8b
7a9ce47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123d436
7a9ce47
2d23a8b
987957a
 
 
 
 
 
 
2d23a8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
987957a
34f5d81
987957a
7a9ce47
 
34f5d81
2d23a8b
 
 
 
 
 
34f5d81
7a9ce47
987957a
 
34f5d81
 
2d23a8b
 
34f5d81
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# app.py

import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import os

# Suppress TensorFlow logging for cleaner logs
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

# Disable GPU usage explicitly to prevent TensorFlow from attempting to access GPU libraries
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

# Load labels
with open('tensorflow/labels.txt', 'r') as f:
    labels = f.read().splitlines()

# Function to load the frozen TensorFlow graph
def load_frozen_graph(pb_file_path):
    with tf.io.gfile.GFile(pb_file_path, 'rb') as f:
        graph_def = tf.compat.v1.GraphDef()
        graph_def.ParseFromString(f.read())
    
    with tf.Graph().as_default() as graph:
        tf.import_graph_def(graph_def, name='')
    return graph

# Load the TensorFlow model
MODEL_DIR = 'tensorflow/'
MODEL_PATH = os.path.join(MODEL_DIR, 'model.pb')
graph = load_frozen_graph(MODEL_PATH)
sess = tf.compat.v1.Session(graph=graph)

# Define tensor names based on your model's outputs
input_tensor = graph.get_tensor_by_name('image_tensor:0')
detected_boxes = graph.get_tensor_by_name('detected_boxes:0')
detected_classes = graph.get_tensor_by_name('detected_classes:0')
detected_scores = graph.get_tensor_by_name('detected_scores:0')

# Define the target size based on your model's expected input
TARGET_WIDTH = 320
TARGET_HEIGHT = 320

def preprocess_image(image):
    """
    Preprocess the input image:
    - Resize to target dimensions
    - Convert to numpy array
    - Normalize pixel values
    - Convert RGB to BGR if required by the model
    """
    image = image.resize((TARGET_WIDTH, TARGET_HEIGHT))
    image_np = np.array(image).astype(np.float32)
    image_np = image_np / 255.0  # Normalize to [0,1]
    image_np = image_np[:, :, (2, 1, 0)]  # Convert RGB to BGR if required
    image_np = np.expand_dims(image_np, axis=0)  # Add batch dimension
    return image_np

def draw_boxes(image, boxes, classes, scores, threshold=0.5):
    """
    Draw bounding boxes and labels on the image.
    Args:
        image (PIL.Image): The original image.
        boxes (np.array): Array of bounding boxes.
        classes (np.array): Array of class IDs.
        scores (np.array): Array of confidence scores.
        threshold (float): Confidence threshold to filter detections.
    Returns:
        PIL.Image: Annotated image.
    """
    draw = ImageDraw.Draw(image)
    try:
        font = ImageFont.truetype("arial.ttf", 15)
    except IOError:
        font = ImageFont.load_default()
    
    for box, cls, score in zip(boxes[0], classes[0], scores[0]):
        if score < threshold:
            continue
        # Convert box coordinates from normalized to absolute
        ymin, xmin, ymax, xmax = box
        left = xmin * image.width
        right = xmax * image.width
        top = ymin * image.height
        bottom = ymax * image.height
        
        # Draw rectangle
        draw.rectangle([(left, top), (right, bottom)], outline="red", width=2)
        
        # Prepare label
        label = f"{labels[int(cls) - 1]}: {score:.2f}"
        
        # Calculate text size using textbbox
        text_bbox = draw.textbbox((0, 0), label, font=font)
        text_width = text_bbox[2] - text_bbox[0]
        text_height = text_bbox[3] - text_bbox[1]
        
        # Draw label background
        draw.rectangle([(left, top - text_height - 4), (left + text_width + 4, top)], fill="red")
        
        # Draw text
        draw.text((left + 2, top - text_height - 2), label, fill="white", font=font)
    
    return image

def predict(image):
    """
    Perform inference on the input image and return the annotated image.
    Args:
        image (PIL.Image): Uploaded image.
    Returns:
        PIL.Image: Annotated image with bounding boxes and labels.
    """
    try:
        # Preprocess the image
        input_array = preprocess_image(image)
        
        # Run inference
        boxes, classes, scores = sess.run(
            [detected_boxes, detected_classes, detected_scores],
            feed_dict={input_tensor: input_array}
        )
        
        # Annotate the image with bounding boxes and labels
        annotated_image = draw_boxes(image.copy(), boxes, classes, scores, threshold=0.5)
        
        return annotated_image
    
    except Exception as e:
        # Return an error image with the error message
        error_image = Image.new('RGB', (500, 500), color=(255, 0, 0))
        draw = ImageDraw.Draw(error_image)
        try:
            font = ImageFont.truetype("arial.ttf", 20)
        except IOError:
            font = ImageFont.load_default()
        error_text = "Error during prediction."
        
        # Calculate text size using textbbox
        text_bbox = draw.textbbox((0, 0), error_text, font=font)
        text_width = text_bbox[2] - text_bbox[0]
        text_height = text_bbox[3] - text_bbox[1]
        
        # Center the text
        draw.rectangle(
            [
                ((500 - text_width) / 2 - 10, (500 - text_height) / 2 - 10),
                ((500 + text_width) / 2 + 10, (500 + text_height) / 2 + 10)
            ],
            fill="black"
        )
        draw.text(
            ((500 - text_width) / 2, (500 - text_height) / 2),
            error_text,
            fill="white",
            font=font
        )
        return error_image

# Define Gradio interface using the new API
title = "JunkWaxHero 🦸‍♂️ - Baseball Card Set Identifier"
description = "Upload an image of a baseball card, and JunkWaxHero will identify the set it belongs to with high accuracy."

# Verify that example images exist to prevent FileNotFoundError
example_images = ["examples/card1.jpg", "examples/card2.jpg", "examples/card3.jpg"]
valid_examples = [img for img in example_images if os.path.exists(img)]
if not valid_examples:
    valid_examples = None  # Remove examples if none exist

iface = gr.Interface(
    fn=predict,
    inputs=gr.Image(type="pil"),
    outputs=gr.Image(type="pil"),
    title=title,
    description=description,
    examples=valid_examples,
    flagging_mode="never"  # Updated parameter
)

if __name__ == "__main__":
    iface.launch()