Spaces:
Runtime error
Runtime error
File size: 11,628 Bytes
5c20520 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import json
from pathlib import Path
from tqdm import tqdm
import pandas as pd
import numpy as np
from utils.openai_access import call_chatgpt
from utils.mpr import MultipleProcessRunnerSimplifier
from utils.prompts import LLM_SCORE_PROMPT
import re
qa_data = {}
def load_qa_results_from_dir(results_dir):
"""从结果目录加载所有QA结果"""
global qa_data
qa_data = {}
results_path = Path(results_dir)
json_files = list(results_path.glob("*.json"))
print(f"找到 {len(json_files)} 个结果文件")
for json_file in tqdm(json_files, desc="加载QA结果"):
try:
with open(json_file, 'r') as f:
data = json.load(f)
if ('index' in data and 'protein_id' in data and
'ground_truth' in data and 'llm_answer' in data):
qa_data[data['index']] = data
except Exception as e:
print(f"加载文件 {json_file} 时出错: {e}")
print(f"成功加载 {len(qa_data)} 个QA对")
return qa_data
def extract_score_from_response(response):
"""从LLM响应中提取分数"""
if not response:
return None
# 尝试解析JSON格式的响应
try:
if isinstance(response, str):
# 尝试直接解析JSON
json_match = re.search(r'\{[^}]*"score"[^}]*\}', response)
if json_match:
json_obj = json.loads(json_match.group())
return json_obj.get('score')
# 尝试提取数字
score_match = re.search(r'"score":\s*(\d+(?:\.\d+)?)', response)
if score_match:
return float(score_match.group(1))
# 尝试提取纯数字
number_match = re.search(r'(\d+(?:\.\d+)?)', response)
if number_match:
score = float(number_match.group(1))
if 0 <= score <= 100:
return score
elif isinstance(response, dict):
return response.get('score')
except:
pass
return None
def process_single_scoring(process_id, idx, qa_index, writer, save_dir):
"""处理单个QA对的打分"""
try:
qa_item = qa_data[qa_index]
protein_id = qa_item['protein_id']
question = qa_item.get('question', '')
ground_truth = qa_item['ground_truth']
llm_answer = qa_item['llm_answer']
# 构建打分提示
scoring_prompt = LLM_SCORE_PROMPT.replace('{{ground_truth}}', str(ground_truth))
scoring_prompt = scoring_prompt.replace('{{llm_answer}}', str(llm_answer))
# 调用LLM进行打分
score_response = call_chatgpt(scoring_prompt)
score = extract_score_from_response(score_response)
# 构建结果数据
result = {
'index': qa_index,
'protein_id': protein_id,
'question': question,
'ground_truth': ground_truth,
'llm_answer': llm_answer,
'score': score,
'raw_score_response': score_response
}
# 保存文件
save_path = os.path.join(save_dir, f"score_{protein_id}_{qa_index}.json")
with open(save_path, 'w') as f:
json.dump(result, f, indent=2, ensure_ascii=False)
except Exception as e:
print(f"处理QA索引 {qa_index} 时出错: {str(e)}")
def get_missing_score_indices(save_dir):
"""检查哪些QA索引尚未完成打分"""
all_qa_indices = list(qa_data.keys())
problem_qa_indices = set()
for qa_index in tqdm(all_qa_indices, desc="检查打分文件"):
protein_id = qa_data[qa_index]['protein_id']
json_file = Path(save_dir) / f"score_{protein_id}_{qa_index}.json"
if not json_file.exists():
problem_qa_indices.add(qa_index)
continue
try:
with open(json_file, 'r') as f:
data = json.load(f)
if (data is None or len(data) == 0 or
'score' not in data or
data.get('score') is None):
problem_qa_indices.add(qa_index)
json_file.unlink()
except Exception as e:
problem_qa_indices.add(qa_index)
try:
json_file.unlink()
except:
pass
return problem_qa_indices
def collect_scores_to_json(save_dir, output_json):
"""收集所有打分结果并保存为JSON文件"""
results = []
save_path = Path(save_dir)
score_files = list(save_path.glob("score_*.json"))
for score_file in tqdm(score_files, desc="收集打分结果"):
try:
with open(score_file, 'r') as f:
data = json.load(f)
results.append({
'index': data.get('index'),
'protein_id': data.get('protein_id'),
'question': data.get('question', ''),
'ground_truth': data.get('ground_truth'),
'llm_answer': data.get('llm_answer'),
'score': data.get('score')
})
except Exception as e:
print(f"读取文件 {score_file} 时出错: {e}")
# 按index排序
results.sort(key=lambda x: x.get('index', 0))
# 保存为JSON文件
with open(output_json, 'w', encoding='utf-8') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"打分结果已保存到: {output_json}")
# 转换为DataFrame用于分析
df = pd.DataFrame(results)
return df
def analyze_scores(df):
"""对打分结果进行统计分析"""
print("\n=== 打分结果统计分析 ===")
# 基本统计
valid_scores = df[df['score'].notna()]['score']
if len(valid_scores) == 0:
print("没有有效的打分结果")
return
print(f"总样本数: {len(df)}")
print(f"有效打分数: {len(valid_scores)}")
print(f"无效打分数: {len(df) - len(valid_scores)}")
print(f"有效率: {len(valid_scores)/len(df)*100:.2f}%")
print(f"\n分数统计:")
print(f"平均分: {valid_scores.mean():.2f}")
print(f"中位数: {valid_scores.median():.2f}")
print(f"标准差: {valid_scores.std():.2f}")
print(f"最高分: {valid_scores.max():.2f}")
print(f"最低分: {valid_scores.min():.2f}")
# 分数分布
print(f"\n分数分布:")
bins = [0, 20, 40, 60, 80, 100]
labels = ['0-20', '21-40', '41-60', '61-80', '81-100']
for i, (low, high) in enumerate(zip(bins[:-1], bins[1:])):
count = len(valid_scores[(valid_scores >= low) & (valid_scores <= high)])
percentage = count / len(valid_scores) * 100
print(f"{labels[i]}: {count} ({percentage:.1f}%)")
# 分位数
print(f"\n分位数:")
quantiles = [0.1, 0.25, 0.5, 0.75, 0.9]
for q in quantiles:
print(f"{int(q*100)}%分位数: {valid_scores.quantile(q):.2f}")
# 按蛋白质ID分析(如果样本足够多)
if len(df['protein_id'].unique()) > 1:
print(f"\n按蛋白质ID分析:")
protein_stats = df[df['score'].notna()].groupby('protein_id')['score'].agg(['count', 'mean', 'std']).round(2)
print(protein_stats.head(10))
# 保存统计分析结果
stats_result = {
"basic_stats": {
"total_samples": len(df),
"valid_scores": len(valid_scores),
"invalid_scores": len(df) - len(valid_scores),
"valid_rate": len(valid_scores)/len(df)*100,
"mean_score": float(valid_scores.mean()),
"median_score": float(valid_scores.median()),
"std_score": float(valid_scores.std()),
"max_score": float(valid_scores.max()),
"min_score": float(valid_scores.min())
},
"distribution": {},
"quantiles": {}
}
# 分数分布统计
for i, (low, high) in enumerate(zip(bins[:-1], bins[1:])):
count = len(valid_scores[(valid_scores >= low) & (valid_scores <= high)])
percentage = count / len(valid_scores) * 100
stats_result["distribution"][labels[i]] = {
"count": count,
"percentage": percentage
}
# 分位数统计
for q in quantiles:
stats_result["quantiles"][f"{int(q*100)}%"] = float(valid_scores.quantile(q))
return stats_result
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--results_dir", type=str,
default="data/evolla_hard_motif_go",
help="包含LLM答案结果的目录")
parser.add_argument("--n_process", type=int, default=32,
help="并行进程数")
parser.add_argument("--save_dir", type=str,
default="data/llm_scores",
help="保存打分结果的目录")
parser.add_argument("--output_json", type=str,
default="data/llm_scores_results.json",
help="输出JSON文件路径")
parser.add_argument("--stats_json", type=str,
default="data/llm_scores_stats.json",
help="统计分析结果JSON文件路径")
parser.add_argument("--max_iterations", type=int, default=3,
help="最大迭代次数")
args = parser.parse_args()
# 创建保存目录
os.makedirs(args.save_dir, exist_ok=True)
os.makedirs(os.path.dirname(args.output_json), exist_ok=True)
# 加载QA结果数据
load_qa_results_from_dir(args.results_dir)
if not qa_data:
print("没有找到有效的QA结果数据")
return
# 循环检查和打分
iteration = 0
while iteration < args.max_iterations:
iteration += 1
print(f"\n开始第 {iteration} 轮打分")
# 获取缺失打分的QA索引
missing_indices = get_missing_score_indices(args.save_dir)
if not missing_indices:
print("所有QA对已完成打分!")
break
print(f"发现 {len(missing_indices)} 个待打分的QA对")
missing_indices_list = sorted(list(missing_indices))
# 使用多进程处理打分
mprs = MultipleProcessRunnerSimplifier(
data=missing_indices_list,
do=lambda process_id, idx, qa_index, writer: process_single_scoring(process_id, idx, qa_index, writer, args.save_dir),
n_process=args.n_process,
split_strategy="static"
)
mprs.run()
print(f"第 {iteration} 轮打分完成")
# 收集结果并保存为JSON
df = collect_scores_to_json(args.save_dir, args.output_json)
# 进行统计分析
stats_result = analyze_scores(df)
# 保存统计分析结果为JSON
with open(args.stats_json, 'w', encoding='utf-8') as f:
json.dump(stats_result, f, indent=2, ensure_ascii=False)
print(f"统计分析结果已保存到: {args.stats_json}")
# 检查最终结果
final_missing = get_missing_score_indices(args.save_dir)
if final_missing:
print(f"\n仍有 {len(final_missing)} 个QA对未能成功打分")
else:
print(f"\n所有 {len(qa_data)} 个QA对已成功完成打分!")
if __name__ == "__main__":
main()
|