File size: 11,628 Bytes
5c20520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import json
from pathlib import Path
from tqdm import tqdm
import pandas as pd
import numpy as np
from utils.openai_access import call_chatgpt
from utils.mpr import MultipleProcessRunnerSimplifier
from utils.prompts import LLM_SCORE_PROMPT
import re

qa_data = {}

def load_qa_results_from_dir(results_dir):
    """从结果目录加载所有QA结果"""
    global qa_data
    qa_data = {}
    
    results_path = Path(results_dir)
    json_files = list(results_path.glob("*.json"))
    
    print(f"找到 {len(json_files)} 个结果文件")
    
    for json_file in tqdm(json_files, desc="加载QA结果"):
        try:
            with open(json_file, 'r') as f:
                data = json.load(f)
                if ('index' in data and 'protein_id' in data and 
                    'ground_truth' in data and 'llm_answer' in data):
                    qa_data[data['index']] = data
        except Exception as e:
            print(f"加载文件 {json_file} 时出错: {e}")
    
    print(f"成功加载 {len(qa_data)} 个QA对")
    return qa_data

def extract_score_from_response(response):
    """从LLM响应中提取分数"""
    if not response:
        return None
    
    # 尝试解析JSON格式的响应
    try:
        if isinstance(response, str):
            # 尝试直接解析JSON
            json_match = re.search(r'\{[^}]*"score"[^}]*\}', response)
            if json_match:
                json_obj = json.loads(json_match.group())
                return json_obj.get('score')
            
            # 尝试提取数字
            score_match = re.search(r'"score":\s*(\d+(?:\.\d+)?)', response)
            if score_match:
                return float(score_match.group(1))
            
            # 尝试提取纯数字
            number_match = re.search(r'(\d+(?:\.\d+)?)', response)
            if number_match:
                score = float(number_match.group(1))
                if 0 <= score <= 100:
                    return score
        elif isinstance(response, dict):
            return response.get('score')
    except:
        pass
    
    return None

def process_single_scoring(process_id, idx, qa_index, writer, save_dir):
    """处理单个QA对的打分"""
    try:
        qa_item = qa_data[qa_index]
        protein_id = qa_item['protein_id']
        question = qa_item.get('question', '')
        ground_truth = qa_item['ground_truth']
        llm_answer = qa_item['llm_answer']
        
        # 构建打分提示
        scoring_prompt = LLM_SCORE_PROMPT.replace('{{ground_truth}}', str(ground_truth))
        scoring_prompt = scoring_prompt.replace('{{llm_answer}}', str(llm_answer))
        
        # 调用LLM进行打分
        score_response = call_chatgpt(scoring_prompt)
        score = extract_score_from_response(score_response)
        
        # 构建结果数据
        result = {
            'index': qa_index,
            'protein_id': protein_id,
            'question': question,
            'ground_truth': ground_truth,
            'llm_answer': llm_answer,
            'score': score,
            'raw_score_response': score_response
        }
        
        # 保存文件
        save_path = os.path.join(save_dir, f"score_{protein_id}_{qa_index}.json")
        with open(save_path, 'w') as f:
            json.dump(result, f, indent=2, ensure_ascii=False)
        
    except Exception as e:
        print(f"处理QA索引 {qa_index} 时出错: {str(e)}")

def get_missing_score_indices(save_dir):
    """检查哪些QA索引尚未完成打分"""
    all_qa_indices = list(qa_data.keys())
    problem_qa_indices = set()
    
    for qa_index in tqdm(all_qa_indices, desc="检查打分文件"):
        protein_id = qa_data[qa_index]['protein_id']
        json_file = Path(save_dir) / f"score_{protein_id}_{qa_index}.json"
        
        if not json_file.exists():
            problem_qa_indices.add(qa_index)
            continue
            
        try:
            with open(json_file, 'r') as f:
                data = json.load(f)
                if (data is None or len(data) == 0 or 
                    'score' not in data or 
                    data.get('score') is None):
                    problem_qa_indices.add(qa_index)
                    json_file.unlink()
        except Exception as e:
            problem_qa_indices.add(qa_index)
            try:
                json_file.unlink()
            except:
                pass
    
    return problem_qa_indices

def collect_scores_to_json(save_dir, output_json):
    """收集所有打分结果并保存为JSON文件"""
    results = []
    
    save_path = Path(save_dir)
    score_files = list(save_path.glob("score_*.json"))
    
    for score_file in tqdm(score_files, desc="收集打分结果"):
        try:
            with open(score_file, 'r') as f:
                data = json.load(f)
                results.append({
                    'index': data.get('index'),
                    'protein_id': data.get('protein_id'),
                    'question': data.get('question', ''),
                    'ground_truth': data.get('ground_truth'),
                    'llm_answer': data.get('llm_answer'),
                    'score': data.get('score')
                })
        except Exception as e:
            print(f"读取文件 {score_file} 时出错: {e}")
    
    # 按index排序
    results.sort(key=lambda x: x.get('index', 0))
    
    # 保存为JSON文件
    with open(output_json, 'w', encoding='utf-8') as f:
        json.dump(results, f, indent=2, ensure_ascii=False)
    
    print(f"打分结果已保存到: {output_json}")
    
    # 转换为DataFrame用于分析
    df = pd.DataFrame(results)
    return df

def analyze_scores(df):
    """对打分结果进行统计分析"""
    print("\n=== 打分结果统计分析 ===")
    
    # 基本统计
    valid_scores = df[df['score'].notna()]['score']
    
    if len(valid_scores) == 0:
        print("没有有效的打分结果")
        return
    
    print(f"总样本数: {len(df)}")
    print(f"有效打分数: {len(valid_scores)}")
    print(f"无效打分数: {len(df) - len(valid_scores)}")
    print(f"有效率: {len(valid_scores)/len(df)*100:.2f}%")
    
    print(f"\n分数统计:")
    print(f"平均分: {valid_scores.mean():.2f}")
    print(f"中位数: {valid_scores.median():.2f}")
    print(f"标准差: {valid_scores.std():.2f}")
    print(f"最高分: {valid_scores.max():.2f}")
    print(f"最低分: {valid_scores.min():.2f}")
    
    # 分数分布
    print(f"\n分数分布:")
    bins = [0, 20, 40, 60, 80, 100]
    labels = ['0-20', '21-40', '41-60', '61-80', '81-100']
    
    for i, (low, high) in enumerate(zip(bins[:-1], bins[1:])):
        count = len(valid_scores[(valid_scores >= low) & (valid_scores <= high)])
        percentage = count / len(valid_scores) * 100
        print(f"{labels[i]}: {count} ({percentage:.1f}%)")
    
    # 分位数
    print(f"\n分位数:")
    quantiles = [0.1, 0.25, 0.5, 0.75, 0.9]
    for q in quantiles:
        print(f"{int(q*100)}%分位数: {valid_scores.quantile(q):.2f}")
    
    # 按蛋白质ID分析(如果样本足够多)
    if len(df['protein_id'].unique()) > 1:
        print(f"\n按蛋白质ID分析:")
        protein_stats = df[df['score'].notna()].groupby('protein_id')['score'].agg(['count', 'mean', 'std']).round(2)
        print(protein_stats.head(10))
    
    # 保存统计分析结果
    stats_result = {
        "basic_stats": {
            "total_samples": len(df),
            "valid_scores": len(valid_scores),
            "invalid_scores": len(df) - len(valid_scores),
            "valid_rate": len(valid_scores)/len(df)*100,
            "mean_score": float(valid_scores.mean()),
            "median_score": float(valid_scores.median()),
            "std_score": float(valid_scores.std()),
            "max_score": float(valid_scores.max()),
            "min_score": float(valid_scores.min())
        },
        "distribution": {},
        "quantiles": {}
    }
    
    # 分数分布统计
    for i, (low, high) in enumerate(zip(bins[:-1], bins[1:])):
        count = len(valid_scores[(valid_scores >= low) & (valid_scores <= high)])
        percentage = count / len(valid_scores) * 100
        stats_result["distribution"][labels[i]] = {
            "count": count,
            "percentage": percentage
        }
    
    # 分位数统计
    for q in quantiles:
        stats_result["quantiles"][f"{int(q*100)}%"] = float(valid_scores.quantile(q))
    
    return stats_result

def main():
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--results_dir", type=str,
                      default="data/evolla_hard_motif_go",
                      help="包含LLM答案结果的目录")
    parser.add_argument("--n_process", type=int, default=32,
                      help="并行进程数")
    parser.add_argument("--save_dir", type=str,
                      default="data/llm_scores",
                      help="保存打分结果的目录")
    parser.add_argument("--output_json", type=str,
                      default="data/llm_scores_results.json",
                      help="输出JSON文件路径")
    parser.add_argument("--stats_json", type=str,
                      default="data/llm_scores_stats.json",
                      help="统计分析结果JSON文件路径")
    parser.add_argument("--max_iterations", type=int, default=3,
                      help="最大迭代次数")
    args = parser.parse_args()

    # 创建保存目录
    os.makedirs(args.save_dir, exist_ok=True)
    os.makedirs(os.path.dirname(args.output_json), exist_ok=True)
    
    # 加载QA结果数据
    load_qa_results_from_dir(args.results_dir)
    
    if not qa_data:
        print("没有找到有效的QA结果数据")
        return
    
    # 循环检查和打分
    iteration = 0
    while iteration < args.max_iterations:
        iteration += 1
        print(f"\n开始第 {iteration} 轮打分")
        
        # 获取缺失打分的QA索引
        missing_indices = get_missing_score_indices(args.save_dir)
        
        if not missing_indices:
            print("所有QA对已完成打分!")
            break
        
        print(f"发现 {len(missing_indices)} 个待打分的QA对")
        
        missing_indices_list = sorted(list(missing_indices))
        
        # 使用多进程处理打分
        mprs = MultipleProcessRunnerSimplifier(
            data=missing_indices_list,
            do=lambda process_id, idx, qa_index, writer: process_single_scoring(process_id, idx, qa_index, writer, args.save_dir),
            n_process=args.n_process,
            split_strategy="static"
        )
        mprs.run()
        
        print(f"第 {iteration} 轮打分完成")
    
    # 收集结果并保存为JSON
    df = collect_scores_to_json(args.save_dir, args.output_json)
    
    # 进行统计分析
    stats_result = analyze_scores(df)
    
    # 保存统计分析结果为JSON
    with open(args.stats_json, 'w', encoding='utf-8') as f:
        json.dump(stats_result, f, indent=2, ensure_ascii=False)
    print(f"统计分析结果已保存到: {args.stats_json}")
    
    # 检查最终结果
    final_missing = get_missing_score_indices(args.save_dir)
    if final_missing:
        print(f"\n仍有 {len(final_missing)} 个QA对未能成功打分")
    else:
        print(f"\n所有 {len(qa_data)} 个QA对已成功完成打分!")

if __name__ == "__main__":
    main()