File size: 19,911 Bytes
5c20520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import os
import json
import sys
import tempfile
import gradio as gr
from typing import Dict, List, Optional
from pathlib import Path
from Bio import SeqIO
from io import StringIO

# 添加必要的路径
root_path = os.path.dirname(os.path.abspath(__file__))
sys.path.append(root_path)
sys.path.append(os.path.join(root_path, "Models/ProTrek"))

# 导入所需模块
from interproscan import InterproScan
from Bio.Blast.Applications import NcbiblastpCommandline
from utils.utils import extract_interproscan_metrics, get_seqnid, extract_blast_metrics, rename_interproscan_keys
from go_integration_pipeline import GOIntegrationPipeline
from utils.openai_access import call_chatgpt
from utils.prompts import FUNCTION_PROMPT

def get_prompt_template(selected_info_types=None):
    """
    获取prompt模板,支持可选的信息类型
    
    Args:
        selected_info_types: 需要包含的信息类型列表,如['motif', 'go', 'superfamily', 'panther']
    """
    if selected_info_types is None:
        selected_info_types = ['motif', 'go']  # 默认包含motif和go信息

    PROMPT_TEMPLATE = FUNCTION_PROMPT + '\n' + """
    input information:

    {%- if 'motif' in selected_info_types and motif_pfam %}

    motif:{% for motif_id, motif_info in motif_pfam.items() %}
    {{motif_id}}: {{motif_info}}
    {% endfor %}
    {%- endif %}

    {%- if 'go' in selected_info_types and go_data.status == 'success' %}

    GO:{% for go_entry in go_data.go_annotations %}
    ▢ GO term{{loop.index}}: {{go_entry.go_id}}
    • definition: {{ go_data.all_related_definitions.get(go_entry.go_id, 'not found definition') }}
    {% endfor %}
    {%- endif %}

    {%- for info_type in selected_info_types %}
    {%- if info_type not in ['motif', 'go'] and interpro_descriptions.get(info_type) %}

    {{info_type}}:{% for ipr_id, ipr_info in interpro_descriptions[info_type].items() %}
    ▢ {{ipr_id}}: {{ipr_info.name}}
    • description: {{ipr_info.abstract}}
    {% endfor %}
    {%- endif %}
    {%- endfor %}

    question: \n {{question}}
    """

    return PROMPT_TEMPLATE

class ProteinAnalysisDemo:
    def __init__(self):
        """
        蛋白质分析演示类
        """
        self.blast_database = "uniprot_swissprot"
        self.expect_value = 0.01
        self.interproscan_path = "interproscan/interproscan-5.75-106.0/interproscan.sh"
        self.interproscan_libraries = [
            "PFAM", "PIRSR", "PROSITE_PROFILES", "SUPERFAMILY", "PRINTS", 
            "PANTHER", "CDD", "GENE3D", "NCBIFAM", "SFLM", "MOBIDB_LITE", 
            "COILS", "PROSITE_PATTERNS", "FUNFAM", "SMART"
        ]
        self.go_topk = 2
        self.selected_info_types = ['motif', 'go']
        
        # 文件路径配置
        self.pfam_descriptions_path = 'data/raw_data/all_pfam_descriptions.json'
        self.go_info_path = 'data/raw_data/go.json'
        self.interpro_data_path = 'data/raw_data/interpro_data.json'
        
        # 初始化GO整合管道
        self.go_pipeline = GOIntegrationPipeline(topk=self.go_topk)
        
        # 初始化InterPro管理器(如果需要)
        self.interpro_manager = None
        other_types = [t for t in self.selected_info_types if t not in ['motif', 'go']]
        if other_types and os.path.exists(self.interpro_data_path):
            try:
                from utils.generate_protein_prompt import get_interpro_manager
                self.interpro_manager = get_interpro_manager(self.interpro_data_path, None)
            except Exception as e:
                print(f"初始化InterPro管理器失败: {str(e)}")
    
    def validate_protein_sequence(self, sequence: str) -> bool:
        """
        验证蛋白质序列格式
        """
        if not sequence:
            return False
        
        # 移除空白字符
        sequence = sequence.strip().upper()
        
        # 检查是否包含有效的氨基酸字符
        valid_aa = set('ACDEFGHIKLMNPQRSTVWY')
        sequence_chars = set(sequence.replace('\n', '').replace(' ', ''))
        
        return sequence_chars.issubset(valid_aa) and len(sequence) > 0
    
    def parse_fasta_content(self, fasta_content: str) -> tuple:
        """
        解析FASTA内容,返回第一个序列
        """
        try:
            fasta_io = StringIO(fasta_content)
            records = list(SeqIO.parse(fasta_io, "fasta"))
            
            if not records:
                return None, "FASTA文件中没有找到有效的序列"
            
            if len(records) > 1:
                return None, "演示版本只支持单一序列,检测到多个序列"
            
            record = records[0]
            return str(record.seq), f"成功解析序列 ID: {record.id}"
            
        except Exception as e:
            return None, f"解析FASTA文件出错: {str(e)}"
    
    def create_temp_fasta(self, sequence: str, seq_id: str = "demo_protein") -> str:
        """
        创建临时FASTA文件
        """
        temp_file = tempfile.NamedTemporaryFile(mode='w', suffix='.fasta', delete=False)
        temp_file.write(f">{seq_id}\n{sequence}\n")
        temp_file.close()
        return temp_file.name
    
    def run_blast_analysis(self, fasta_file: str, temp_dir: str) -> Dict:
        """
        运行BLAST分析
        """
        blast_xml = os.path.join(temp_dir, "blast_results.xml")
        
        try:
            blast_cmd = NcbiblastpCommandline(
                query=fasta_file,
                db=self.blast_database,
                out=blast_xml,
                outfmt=5,  # XML格式
                evalue=self.expect_value
            )
            blast_cmd()
            
            # 提取BLAST结果
            blast_results = extract_blast_metrics(blast_xml)
            
            # 获取序列字典
            seq_dict = get_seqnid(fasta_file)
            
            blast_info = {}
            for uid, info in blast_results.items():
                blast_info[uid] = {"sequence": seq_dict[uid], "blast_results": info}
            
            return blast_info
            
        except Exception as e:
            print(f"BLAST分析出错: {str(e)}")
            return {}
        finally:
            if os.path.exists(blast_xml):
                os.remove(blast_xml)
    
    def run_interproscan_analysis(self, fasta_file: str, temp_dir: str) -> Dict:
        """
        运行InterProScan分析
        """
        interproscan_json = os.path.join(temp_dir, "interproscan_results.json")
        
        try:
            interproscan = InterproScan(self.interproscan_path)
            input_args = {
                "fasta_file": fasta_file,
                "goterms": True,
                "pathways": True,
                "save_dir": interproscan_json
            }
            interproscan.run(**input_args)
            
            # 提取InterProScan结果
            interproscan_results = extract_interproscan_metrics(
                interproscan_json, 
                librarys=self.interproscan_libraries
            )
            
            # 获取序列字典
            seq_dict = get_seqnid(fasta_file)
            
            interproscan_info = {}
            for id, seq in seq_dict.items():
                info = interproscan_results[seq]
                info = rename_interproscan_keys(info)
                interproscan_info[id] = {"sequence": seq, "interproscan_results": info}
            
            return interproscan_info
            
        except Exception as e:
            print(f"InterProScan分析出错: {str(e)}")
            return {}
        finally:
            if os.path.exists(interproscan_json):
                os.remove(interproscan_json)
    
    def generate_prompt(self, protein_id: str, interproscan_info: Dict, 
                       protein_go_dict: Dict, question: str) -> str:
        """
        从内存中的数据生成prompt,包含完整的motif和GO定义
        """
        try:
            from utils.protein_go_analysis import get_go_definition
            from jinja2 import Template
            # from utils.generate_protein_prompt import get_prompt_template
            
            # 获取GO分析结果
            go_ids = protein_go_dict.get(protein_id, [])
            go_annotations = []
            all_related_definitions = {}
            
            if go_ids:
                for go_id in go_ids:
                    # 确保GO ID格式正确
                    clean_go_id = go_id.split(":")[-1] if ":" in go_id else go_id
                    go_annotations.append({"go_id": clean_go_id})
                    
                    # 获取GO定义
                    if os.path.exists(self.go_info_path):
                        definition = get_go_definition(clean_go_id, self.go_info_path)
                        if definition:
                            all_related_definitions[clean_go_id] = definition
            
            # 获取motif信息
            motif_pfam = {}
            if os.path.exists(self.pfam_descriptions_path):
                try:
                    # 从interproscan结果中提取pfam信息
                    interproscan_results = interproscan_info[protein_id].get('interproscan_results', {})
                    pfam_entries = interproscan_results.get('pfam_id', [])
                    
                    # 加载pfam描述
                    with open(self.pfam_descriptions_path, 'r') as f:
                        pfam_descriptions = json.load(f)
                    
                    # 构建motif_pfam字典
                    for entry in pfam_entries:
                        for pfam_id, ipr_id in entry.items():
                            if pfam_id and pfam_id in pfam_descriptions:
                                motif_pfam[pfam_id] = pfam_descriptions[pfam_id]['description']
                                
                except Exception as e:
                    print(f"获取motif信息时出错: {str(e)}")
            
            # 获取InterPro描述信息
            interpro_descriptions = {}
            other_types = [t for t in self.selected_info_types if t not in ['motif', 'go']]
            if other_types and self.interpro_manager:
                interpro_descriptions = self.interpro_manager.get_description(protein_id, other_types)
            
            # 准备模板数据
            template_data = {
                "protein_id": protein_id,
                "selected_info_types": self.selected_info_types,
                "go_data": {
                    "status": "success" if go_annotations else "no_data",
                    "go_annotations": go_annotations,
                    "all_related_definitions": all_related_definitions
                },
                "motif_pfam": motif_pfam,
                "interpro_descriptions": interpro_descriptions,
                "question": question
            }
            
            # 使用模板生成prompt
            PROMPT_TEMPLATE = get_prompt_template(self.selected_info_types)  # demo版本不使用lmdb
            template = Template(PROMPT_TEMPLATE)
            return template.render(**template_data)
            
        except Exception as e:
            print(f"生成prompt时出错 (protein_id: {protein_id}): {str(e)}")
            # 如果出错,返回简化版本的prompt
            return self._generate_fallback_prompt(protein_id, interproscan_info, protein_go_dict, question)
    
    def _generate_fallback_prompt(self, protein_id: str, interproscan_info: Dict, 
                                 protein_go_dict: Dict, question: str) -> str:
        """
        生成备用prompt(当主要方法失败时使用)
        """
        from utils.prompts import FUNCTION_PROMPT
        
        prompt_parts = [FUNCTION_PROMPT]
        prompt_parts.append("\ninput information:")
        
        # 添加motif信息
        if 'motif' in self.selected_info_types:
            interproscan_results = interproscan_info[protein_id].get('interproscan_results', {})
            pfam_entries = interproscan_results.get('pfam_id', [])
            
            if pfam_entries:
                prompt_parts.append("\nmotif:")
                for entry in pfam_entries:
                    for key, value in entry.items():
                        if value:
                            prompt_parts.append(f"{value}: motif information")
        
        # 添加GO信息
        if 'go' in self.selected_info_types:
            go_ids = protein_go_dict.get(protein_id, [])
            if go_ids:
                prompt_parts.append("\nGO:")
                for i, go_id in enumerate(go_ids[:10], 1):
                    prompt_parts.append(f"▢ GO term{i}: {go_id}")
                    prompt_parts.append(f"• definition: GO term definition")
        
        # 添加用户问题
        prompt_parts.append(f"\nquestion: \n{question}")
        
        return "\n".join(prompt_parts)
    
    def analyze_protein(self, sequence_input: str, fasta_file, question: str) -> str:
        """
        分析蛋白质序列并回答问题
        """
        if not question.strip():
            return "请输入您的问题"
        
        # 确定使用哪个序列输入
        final_sequence = None
        sequence_source = ""
        
        if fasta_file is not None:
            # 优先使用上传的文件
            try:
                fasta_content = fasta_file.read().decode('utf-8')
                final_sequence, parse_msg = self.parse_fasta_content(fasta_content)
                if final_sequence is None:
                    return f"文件解析错误: {parse_msg}"
                sequence_source = f"来自上传文件: {parse_msg}"
            except Exception as e:
                return f"读取上传文件出错: {str(e)}"
        elif sequence_input.strip():
            # 使用文本框输入的序列
            if self.validate_protein_sequence(sequence_input):
                final_sequence = sequence_input.strip().upper().replace('\n', '').replace(' ', '')
                sequence_source = "来自文本框输入"
            else:
                return "输入的序列格式不正确,请输入有效的蛋白质序列"
        else:
            return "请输入蛋白质序列或上传FASTA文件"
        
        # 创建临时目录和文件
        with tempfile.TemporaryDirectory() as temp_dir:
            try:
                # 创建临时FASTA文件
                temp_fasta = self.create_temp_fasta(final_sequence, "demo_protein")
                
                # 运行分析
                status_msg = f"序列来源: {sequence_source}\n序列长度: {len(final_sequence)} 氨基酸\n\n正在进行分析...\n"
                
                # 步骤1: BLAST和InterProScan分析
                status_msg += "步骤1: 运行BLAST分析...\n"
                blast_info = self.run_blast_analysis(temp_fasta, temp_dir)
                
                status_msg += "步骤2: 运行InterProScan分析...\n"
                interproscan_info = self.run_interproscan_analysis(temp_fasta, temp_dir)
                
                if not blast_info or not interproscan_info:
                    return status_msg + "分析失败: 无法获取BLAST或InterProScan结果"
                
                # 步骤2: 整合GO信息
                status_msg += "步骤3: 整合GO信息...\n"
                protein_go_dict = self.go_pipeline.first_level_filtering(interproscan_info, blast_info)
                
                # 步骤3: 生成prompt
                status_msg += "步骤4: 生成分析prompt...\n"
                protein_id = "demo_protein"
                prompt = self.generate_prompt(protein_id, interproscan_info, protein_go_dict, question)
                
                # 步骤4: 调用LLM生成答案
                status_msg += "步骤5: 生成答案...\n"
                llm_response = call_chatgpt(prompt)
                
                # 组织最终结果
                result = f"""
{status_msg}

=== 分析完成 ===

问题: {question}

答案: {llm_response}

=== 分析详情 ===
- BLAST匹配数: {len(blast_info.get(protein_id, {}).get('blast_results', []))}
- InterProScan域数: {len(interproscan_info.get(protein_id, {}).get('interproscan_results', {}).get('pfam_id', []))}
- GO术语数: {len(protein_go_dict.get(protein_id, []))}
"""
                
                return result
                
            except Exception as e:
                return f"分析过程中出错: {str(e)}"
            finally:
                # 清理临时文件
                if 'temp_fasta' in locals() and os.path.exists(temp_fasta):
                    os.remove(temp_fasta)

def create_demo():
    """
    创建Gradio演示界面
    """
    analyzer = ProteinAnalysisDemo()
    
    with gr.Blocks(title="蛋白质功能分析演示") as demo:
        gr.Markdown("# 🧬 蛋白质功能分析演示")
        gr.Markdown("输入蛋白质序列和问题,AI将基于BLAST、InterProScan和GO信息为您提供专业分析")
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### 📝 序列输入")
                sequence_input = gr.Textbox(
                    label="蛋白质序列",
                    placeholder="请输入蛋白质序列(单字母氨基酸代码)...",
                    lines=5,
                    max_lines=10
                )
                
                gr.Markdown("**或者**")
                
                fasta_file = gr.File(
                    label="上传FASTA文件",
                    file_types=[".fasta", ".fa", ".fas"],
                    file_count="single"
                )
                
                gr.Markdown("### ❓ 您的问题")
                question_input = gr.Textbox(
                    label="问题",
                    placeholder="请输入关于该蛋白质的问题,例如:这个蛋白质的主要功能是什么?",
                    lines=3
                )
                
                analyze_btn = gr.Button("🔍 开始分析", variant="primary", size="lg")
            
            with gr.Column(scale=2):
                gr.Markdown("### 📊 分析结果")
                output = gr.Textbox(
                    label="分析结果",
                    lines=20,
                    max_lines=30,
                    show_copy_button=True
                )
        
        # 示例
        gr.Markdown("### 💡 示例")
        gr.Examples(
            examples=[
                ["MKALIVLGLVLLSVTVQGKVFERCELARTLKRLGMDGYRGISLANWMCLAKWESGYNTRATNYNAGDRSTDYGIFQINSRYWCNDGKTPGAVNACHLSCSALLQDNIADAVACAKRVVRDPQGIRAWVAWRNRCQNRDVRQYVQGCGV", "这个蛋白质的主要功能是什么?"],
                ["MGSSHHHHHHSSGLVPRGSHMRGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSRNAKQFLEINGGSHSCANSGNSNQALIGKKGVAWMKRFPTSREJ", "这个蛋白质可能参与哪些生物学过程?"],
                ["ATGAGTGAACGTCTGAAATCTATCATCACCGTCGACGACGAGAACGTCAAGCTGATCGACAAGATCCTGGCCTCCATCAAGGACCTGAACGAGCTGGTGGACATGATCGACGAGATCAAGAACGTCGACGACGAGCTGATCGACAAGATCCTGGCC", "这个序列编码的蛋白质具有什么结构特征?"]
            ],
            inputs=[sequence_input, question_input]
        )
        
        analyze_btn.click(
            fn=analyzer.analyze_protein,
            inputs=[sequence_input, fasta_file, question_input],
            outputs=[output]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.launch(
        server_name="0.0.0.0",
        server_port=30002,
        share=True,
        debug=False
    )