File size: 21,569 Bytes
5c20520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import os
import json
import sys
import argparse
from typing import Dict, List, Optional
from pathlib import Path
from tqdm import tqdm

# 添加必要的路径
root_path = os.path.dirname(os.path.abspath(__file__))
print(root_path)
sys.path.append(root_path)
sys.path.append(os.path.join(root_path, "Models/ProTrek"))

# 导入所需模块
from interproscan import InterproScan
from Bio.Blast.Applications import NcbiblastpCommandline
from utils.utils import extract_interproscan_metrics, get_seqnid, extract_blast_metrics, rename_interproscan_keys
from go_integration_pipeline import GOIntegrationPipeline
from utils.generate_protein_prompt import generate_prompt, get_interpro_manager, get_lmdb_connection
from utils.openai_access import call_chatgpt

class IntegratedProteinPipeline:
    def __init__(self, 
                 blast_database: str = "uniprot_swissprot",
                 expect_value: float = 0.01,
                 interproscan_path: str = "interproscan/interproscan-5.75-106.0/interproscan.sh",
                 interproscan_libraries: List[str] = None,
                 go_topk: int = 2,
                 selected_info_types: List[str] = None,
                 pfam_descriptions_path: str = None,
                 go_info_path: str = None,
                 interpro_data_path: str = None,
                 lmdb_path: str = None,
                 args: argparse.Namespace = None):
        """
        整合蛋白质分析管道
        
        Args:
            blast_database: BLAST数据库名称
            expect_value: BLAST E-value阈值
            interproscan_path: InterProScan程序路径
            interproscan_libraries: InterProScan库列表
            go_topk: GO整合的topk参数
            selected_info_types: prompt生成时选择的信息类型
            pfam_descriptions_path: Pfam描述文件路径
            go_info_path: GO信息文件路径
            interpro_data_path: InterPro数据文件路径
            lmdb_path: LMDB数据库路径
        """
        self.blast_database = blast_database
        self.expect_value = expect_value
        self.interproscan_path = interproscan_path
        self.interproscan_libraries = interproscan_libraries or [
            "PFAM", "PIRSR", "PROSITE_PROFILES", "SUPERFAMILY", "PRINTS", 
            "PANTHER", "CDD", "GENE3D", "NCBIFAM", "SFLM", "MOBIDB_LITE", 
            "COILS", "PROSITE_PATTERNS", "FUNFAM", "SMART"
        ]
        self.go_topk = go_topk
        self.selected_info_types = selected_info_types or ['motif', 'go']
        
        # 文件路径配置
        self.pfam_descriptions_path = pfam_descriptions_path
        self.go_info_path = go_info_path
        self.interpro_data_path = interpro_data_path
        self.lmdb_path = lmdb_path
        self.interproscan_info_path = args.interproscan_info_path
        self.blast_info_path = args.blast_info_path
        
        # 初始化GO整合管道
        self.go_pipeline = GOIntegrationPipeline(topk=self.go_topk)
        
        # 初始化InterPro管理器(如果需要)
        self.interpro_manager = None
        other_types = [t for t in self.selected_info_types if t not in ['motif', 'go']]
        if other_types and self.interpro_data_path:
            self.interpro_manager = get_interpro_manager(self.interpro_data_path, None)
    
    def step1_run_blast_and_interproscan(self, input_fasta: str, temp_dir: str = "temp") -> tuple:
        """
        步骤1: 运行BLAST和InterProScan分析
        
        Args:
            input_fasta: 输入FASTA文件路径
            temp_dir: 临时文件目录
            
        Returns:
            tuple: (interproscan_info, blast_info)
        """
        print("步骤1: 运行BLAST和InterProScan分析...")
        
        # 创建临时目录
        os.makedirs(temp_dir, exist_ok=True)
        
        # 获取序列字典
        seq_dict = get_seqnid(input_fasta)
        print(f"读取到 {len(seq_dict)} 个序列")
        
        # 运行BLAST
        print("运行BLAST分析...")
        blast_xml = os.path.join(temp_dir, "blast_results.xml")
        blast_cmd = NcbiblastpCommandline(
            query=input_fasta,
            db=self.blast_database,
            out=blast_xml,
            outfmt=5,  # XML格式
            evalue=self.expect_value
        )
        blast_cmd()
        
        # 提取BLAST结果
        blast_results = extract_blast_metrics(blast_xml)
        blast_info = {}
        for uid, info in blast_results.items():
            blast_info[uid] = {"sequence": seq_dict[uid], "blast_results": info}
        
        # 运行InterProScan
        print("运行InterProScan分析...")
        interproscan_json = os.path.join(temp_dir, "interproscan_results.json")
        interproscan = InterproScan(self.interproscan_path)
        input_args = {
            "fasta_file": input_fasta,
            "goterms": True,
            "pathways": True,
            "save_dir": interproscan_json
        }
        interproscan.run(**input_args)
        
        # 提取InterProScan结果
        interproscan_results = extract_interproscan_metrics(
            interproscan_json, 
            librarys=self.interproscan_libraries
        )
        
        interproscan_info = {}
        for id, seq in seq_dict.items():
            info = interproscan_results[seq]
            info = rename_interproscan_keys(info)
            interproscan_info[id] = {"sequence": seq, "interproscan_results": info}
        
        # 清理临时文件
        if os.path.exists(blast_xml):
            os.remove(blast_xml)
        if os.path.exists(interproscan_json):
            os.remove(interproscan_json)
        
        print(f"步骤1完成: 处理了 {len(interproscan_info)} 个蛋白质")
        return interproscan_info, blast_info
    
    def step2_integrate_go_information(self, interproscan_info: Dict, blast_info: Dict) -> Dict:
        """
        步骤2: 整合GO信息
        
        Args:
            interproscan_info: InterProScan结果
            blast_info: BLAST结果
            
        Returns:
            Dict: 整合后的GO信息
        """
        print("步骤2: 整合GO信息...")
        
        # 使用GO整合管道进行第一层筛选
        protein_go_dict = self.go_pipeline.first_level_filtering(interproscan_info, blast_info)
        
        print(f"步骤2完成: 为 {len(protein_go_dict)} 个蛋白质整合了GO信息")
        return protein_go_dict
    
    def step3_generate_prompts(self, interproscan_info: Dict, blast_info: Dict, 
                              protein_go_dict: Dict) -> Dict:
        """
        步骤3: 生成蛋白质prompt
        
        Args:
            interproscan_info: InterProScan结果
            blast_info: BLAST结果
            protein_go_dict: 整合的GO信息
            
        Returns:
            Dict: 蛋白质ID到prompt的映射(如果有lmdb则包含QA对)
        """
        print("步骤3: 生成蛋白质prompt...")
        
        # 创建临时的GO整合文件格式(用于generate_prompt函数)
        temp_go_data = {}
        for protein_id, go_ids in protein_go_dict.items():
            temp_go_data[protein_id] = go_ids
        
        prompts_data = {}
        
        if self.lmdb_path:
            # 如果有lmdb路径,处理QA数据
            from utils.generate_protein_prompt import get_qa_data
            
            global_index = 0
            for protein_id in tqdm(interproscan_info.keys(), desc="生成prompts"):
                # 获取QA对
                qa_pairs = get_qa_data(protein_id, self.lmdb_path)
                
                for qa_pair in qa_pairs:
                    question = qa_pair['question']
                    ground_truth = qa_pair['ground_truth']
                    
                    # 生成prompt(需要修改generate_prompt函数以支持内存数据)
                    prompt = self._generate_prompt_from_memory(
                        protein_id, interproscan_info, temp_go_data, question
                    )
                    
                    if prompt:
                        prompts_data[global_index] = {
                            "index": global_index,
                            "protein_id": protein_id,
                            "prompt": prompt,
                            "question": question,
                            "ground_truth": ground_truth
                        }
                        global_index += 1
        else:
            # 如果没有lmdb路径,按原来的方式处理
            for protein_id in tqdm(interproscan_info.keys(), desc="生成prompts"):
                prompt = self._generate_prompt_from_memory(
                    protein_id, interproscan_info, temp_go_data
                )
                if prompt:
                    prompts_data[protein_id] = prompt
        
        print(f"步骤3完成: 生成了 {len(prompts_data)} 个prompt")
        return prompts_data
    
    def _generate_prompt_from_memory(self, protein_id: str, interproscan_info: Dict, 
                                   protein_go_dict: Dict, question: str = None) -> str:
        """
        从内存中的数据生成prompt,包含完整的motif和GO定义
        """
        try:
            from utils.protein_go_analysis import get_go_definition
            from jinja2 import Template
            from utils.generate_protein_prompt import get_prompt_template
            
            # 获取GO分析结果
            go_ids = protein_go_dict.get(protein_id, [])
            go_annotations = []
            all_related_definitions = {}
            
            if go_ids:
                for go_id in go_ids:
                    # 确保GO ID格式正确
                    clean_go_id = go_id.split(":")[-1] if ":" in go_id else go_id
                    go_annotations.append({"go_id": clean_go_id})
                    
                    # 获取GO定义
                    definition = get_go_definition(clean_go_id,self.go_info_path)
                    if definition:
                        all_related_definitions[clean_go_id] = definition
            
            # 获取motif信息
            motif_pfam = {}
            if self.pfam_descriptions_path:
                try:
                    # 从interproscan结果中提取pfam信息
                    interproscan_results = interproscan_info[protein_id].get('interproscan_results', {})
                    pfam_entries = interproscan_results.get('pfam_id', [])
                    
                    # 加载pfam描述
                    with open(self.pfam_descriptions_path, 'r') as f:
                        pfam_descriptions = json.load(f)
                    
                    # 构建motif_pfam字典
                    for entry in pfam_entries:
                        for pfam_id, ipr_id in entry.items():
                            if pfam_id and pfam_id in pfam_descriptions:
                                motif_pfam[pfam_id] = pfam_descriptions[pfam_id]['description']
                                
                except Exception as e:
                    print(f"获取motif信息时出错: {str(e)}")
            
            # 获取InterPro描述信息
            interpro_descriptions = {}
            other_types = [t for t in self.selected_info_types if t not in ['motif', 'go']]
            if other_types and self.interpro_manager:
                interpro_descriptions = self.interpro_manager.get_description(protein_id, other_types)
            
            # 准备模板数据
            template_data = {
                "protein_id": protein_id,
                "selected_info_types": self.selected_info_types,
                "go_data": {
                    "status": "success" if go_annotations else "no_data",
                    "go_annotations": go_annotations,
                    "all_related_definitions": all_related_definitions
                },
                "motif_pfam": motif_pfam,
                "interpro_descriptions": interpro_descriptions,
                "question": question
            }
            
            # 使用模板生成prompt
            PROMPT_TEMPLATE = get_prompt_template(self.selected_info_types, self.lmdb_path)
            template = Template(PROMPT_TEMPLATE)
            return template.render(**template_data)
            
        except Exception as e:
            print(f"生成prompt时出错 (protein_id: {protein_id}): {str(e)}")
            # 如果出错,返回简化版本的prompt
            return self._generate_simple_prompt(protein_id, interproscan_info, protein_go_dict, question)
    
    def _generate_simple_prompt(self, protein_id: str, interproscan_info: Dict, 
                               protein_go_dict: Dict, question: str = None) -> str:
        """
        生成简化版本的prompt(作为备用)
        """
        # 获取蛋白质序列
        sequence = interproscan_info[protein_id].get('sequence', '')
        
        # 获取GO信息
        go_ids = protein_go_dict.get(protein_id, [])
        
        # 获取motif信息
        interproscan_results = interproscan_info[protein_id].get('interproscan_results', {})
        pfam_entries = interproscan_results.get('pfam_id', [])
        
        # 简化的prompt生成逻辑
        prompt_parts = []
        
        if self.lmdb_path:
            from utils.prompts import FUNCTION_PROMPT
            prompt_parts.append(FUNCTION_PROMPT)
        else:
            from utils.prompts import ENZYME_PROMPT
            prompt_parts.append(ENZYME_PROMPT)
        
        prompt_parts.append("\ninput information:")
        
        # 添加motif信息
        if 'motif' in self.selected_info_types and pfam_entries:
            prompt_parts.append("\nmotif:")
            for entry in pfam_entries:
                for key, value in entry.items():
                    if value:
                        prompt_parts.append(f"{value}: 无详细描述")
        
        # 添加GO信息
        if 'go' in self.selected_info_types and go_ids:
            prompt_parts.append("\nGO:")
            for i, go_id in enumerate(go_ids[:10], 1):
                prompt_parts.append(f"▢ GO term{i}: {go_id}")
                prompt_parts.append(f"• definition: 无详细定义")
        
        if question:
            prompt_parts.append(f"\nquestion: \n{question}")
        
        return "\n".join(prompt_parts)
    
    def step4_generate_llm_answers(self, prompts_data: Dict, save_dir: str) -> None:
        """
        步骤4: 生成LLM答案
        
        Args:
            prompts_data: prompt数据
            save_dir: 保存目录
        """
        print("步骤4: 生成LLM答案...")
        
        # 创建保存目录
        os.makedirs(save_dir, exist_ok=True)
        
        if self.lmdb_path:
            # 如果有lmdb路径,处理QA数据
            for index, qa_item in tqdm(prompts_data.items(), desc="生成LLM答案"):
                try:
                    protein_id = qa_item['protein_id']
                    prompt = qa_item['prompt']
                    question = qa_item['question']
                    ground_truth = qa_item['ground_truth']
                    
                    # 调用LLM生成答案
                    llm_response = call_chatgpt(prompt)
                    
                    # 构建结果数据
                    result = {
                        'protein_id': protein_id,
                        'index': index,
                        'question': question,
                        'ground_truth': ground_truth,
                        'llm_answer': llm_response
                    }
                    
                    # 保存文件
                    save_path = os.path.join(save_dir, f"{protein_id}_{index}.json")
                    with open(save_path, 'w') as f:
                        json.dump(result, f, indent=2, ensure_ascii=False)
                        
                except Exception as e:
                    print(f"处理索引 {index} 时出错: {str(e)}")
        else:
            # 如果没有lmdb路径,按原来的方式处理
            for protein_id, prompt in tqdm(prompts_data.items(), desc="生成LLM答案"):
                try:
                    # 调用LLM生成答案
                    llm_response = call_chatgpt(prompt)
                    
                    # 构建结果数据
                    result = {
                        'protein_id': protein_id,
                        'prompt': prompt,
                        'llm_answer': llm_response
                    }
                    
                    # 保存文件
                    save_path = os.path.join(save_dir, f"{protein_id}.json")
                    with open(save_path, 'w') as f:
                        json.dump(result, f, indent=2, ensure_ascii=False)
                        
                except Exception as e:
                    print(f"处理蛋白质 {protein_id} 时出错: {str(e)}")
        
        print(f"步骤4完成: 结果已保存到 {save_dir}")
    
    def run(self, input_fasta: str, output_dir: str, temp_dir: str = "temp"):
        """
        运行完整的工作流
        
        Args:
            input_fasta: 输入FASTA文件路径
            output_dir: 输出目录
            temp_dir: 临时文件目录
        """
        print(f"开始运行整合蛋白质分析管道...")
        print(f"输入文件: {input_fasta}")
        print(f"输出目录: {output_dir}")
        
        # 创建输出目录
        os.makedirs(output_dir, exist_ok=True)
        
        try:
            # 步骤1: 运行BLAST和InterProScan
            if self.interproscan_info_path is None or self.blast_info_path is None:
                interproscan_info, blast_info = self.step1_run_blast_and_interproscan(
                    input_fasta, temp_dir
                )
            else:
                interproscan_info = json.load(open(self.interproscan_info_path))
                blast_info = json.load(open(self.blast_info_path))
            
            # 步骤2: 整合GO信息
            protein_go_dict = self.step2_integrate_go_information(
                interproscan_info, blast_info
            )
            
            # 步骤3: 生成prompt
            prompts_data = self.step3_generate_prompts(
                interproscan_info, blast_info, protein_go_dict
            )
            print(prompts_data)
            
            # 步骤4: 生成LLM答案
            self.step4_generate_llm_answers(prompts_data, output_dir)
            
            print("整合管道运行完成!")
            
        except Exception as e:
            print(f"管道运行出错: {str(e)}")
            raise
        finally:
            # 清理临时目录
            print(f"清理临时目录: {temp_dir}")
            if os.path.exists(temp_dir):
                import shutil
                shutil.rmtree(temp_dir)

def main():
    parser = argparse.ArgumentParser(description="整合蛋白质分析管道")
    parser.add_argument("--input_fasta", type=str, required=True, help="输入FASTA文件路径")
    parser.add_argument("--output_dir", type=str, required=True, help="输出目录")
    parser.add_argument("--temp_dir", type=str, default="temp", help="临时文件目录")
    parser.add_argument('--interproscan_info_path', type=str, default=None, help="InterProScan结果文件路径")
    parser.add_argument('--blast_info_path', type=str, default=None, help="BLAST结果文件路径")
    
    
    # BLAST参数
    parser.add_argument("--blast_database", type=str, default="uniprot_swissprot", help="BLAST数据库")
    parser.add_argument("--expect_value", type=float, default=0.01, help="BLAST E-value阈值")
    
    # InterProScan参数
    parser.add_argument("--interproscan_path", type=str, 
                       default="interproscan/interproscan-5.75-106.0/interproscan.sh",
                       help="InterProScan程序路径")
    
    # GO整合参数
    parser.add_argument("--go_topk", type=int, default=2, help="GO整合topk参数")
    
    # Prompt生成参数
    parser.add_argument("--selected_info_types", type=str, nargs='+', 
                       default=['motif', 'go'], help="选择的信息类型")
    parser.add_argument("--pfam_descriptions_path", type=str, default='data/raw_data/all_pfam_descriptions.json', help="Pfam描述文件路径")
    parser.add_argument("--go_info_path", type=str, default='data/raw_data/go.json', help="GO信息文件路径")
    parser.add_argument("--interpro_data_path", type=str, default='data/raw_data/interpro_data.json', help="InterPro数据文件路径")
    parser.add_argument("--lmdb_path", type=str, help="LMDB数据库路径")
    
    args = parser.parse_args()
    
    # 创建管道实例
    pipeline = IntegratedProteinPipeline(
        blast_database=args.blast_database,
        expect_value=args.expect_value,
        interproscan_path=args.interproscan_path,
        go_topk=args.go_topk,
        selected_info_types=args.selected_info_types,
        pfam_descriptions_path=args.pfam_descriptions_path,
        go_info_path=args.go_info_path,
        interpro_data_path=args.interpro_data_path,
        lmdb_path=args.lmdb_path,
        args=args
    )
    
    # 运行管道
    pipeline.run(args.input_fasta, args.output_dir, args.temp_dir)

if __name__ == "__main__":
    main()