File size: 15,154 Bytes
5c20520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import abc
import os
import time
import sys


from tqdm import tqdm
from math import ceil


class MultipleProcessRunner:
    """
    Abstarct class for running tasks with multiple process
    There are three abstract methods that should be implemented:
        1. __len__() : return the length of data
        2. _target() : target function for each process
        3. _aggregate() : aggregate results from each process
    """
    
    def __init__(self,
                 data,
                 save_path=None,
                 n_process=1,
                 verbose=True,
                 total_only=True,
                 log_step=1,
                 start_method='fork',
                 split_strategy="queue"):
        """
        Args:
            data     : data to be processed that can be sliced
            
            path     : final output path
            
            n_process: number of process
            
            verbose  : if True, display progress bar
            
            total_only: If True, only total progress bar is displayed
            
            log_step : For total progress bar, Next log will be printed when ``current iteration`` - ``last log
                       iteration`` >= log_step
            
            start_method: start method for multiprocessing
            
            split_strategy: method to split data, can be 'queue', 'static'. If 'queue', data will be put into a
                            queue and each process will get data from the queue. If 'static', data will be split
                            into n_process parts and each process will get one part.
        """
        self.data = data
        self.save_path = save_path
        self.n_process = n_process
        self.verbose = verbose
        self.total_only = total_only
        self.log_step = log_step
        self.start_method = start_method
        self.split_strategy = split_strategy
        
        assert self.split_strategy in ["queue", "static"], f"Split strategy must be 'queue' or 'static', but got {self.split_strategy}"
        
        # get terminal width to format output
        try:
            self.terminal_y = os.get_terminal_size()[0]

        except Exception as e:
            print(e)
            print("Can't get terminal size, set terminal_y = None")
            self.terminal_y = None
    
    def _s2hms(self, seconds: float):
        """
        convert second format of time into hour:minute:second format

        """
        m, s = divmod(seconds, 60)
        h, m = divmod(m, 60)
        
        return "%02d:%02d:%02d" % (h, m, s)

    def _display_time(self, st_time, now, total):
        ed_time = time.time()
        running_time = ed_time - st_time
        rest_time = running_time * (total - now) / now
        iter_sec = f"{now / running_time:.2f}it/s" if now > running_time else f"{running_time / now:.2f}s/it"
        
        return f' [{self._s2hms(running_time)} < {self._s2hms(rest_time)}, {iter_sec}]'

    def _display_bar(self, now, total, length):
        now = now if now <= total else total
        num = now * length // total
        progress_bar = '[' + '#' * num + '_' * (length - num) + ']'
        return progress_bar

    def _display_all(self, now, total, desc, st_time):
        # make a progress bar
        length = 50
        progress_bar = self._display_bar(now, total, length)
        time_display = self._display_time(st_time, now, total)

        display = f'{desc}{progress_bar} {int(now / total * 100):02d}% {now}/{total}{time_display}'
        
        # Clean a line
        width = self.terminal_y if self.terminal_y is not None else 100
        num_space = width - len(display)
        if num_space > 0:
            display += ' ' * num_space
        else:
            length += num_space
            progress_bar = self._display_bar(now, total, length)
            display = f'{desc}{progress_bar} {int(now / total * 100):02d}% {now}/{total}{time_display}'

        # Set color
        display = f"\033[31m{display}\033[0m"
        
        return display
    
    # Print progress bar at specific position in terminal
    def terminal_progress_bar(self,
                              process_id: int,
                              now: int,
                              total: int,
                              desc: str = ''):
        """

        Args:
            process_id: process id
            now: now iteration number
            total: total iteration number
            desc: description

        """
        st_time = self.process_st_time[process_id]
        
        # Aggregate total information
        self.counts[process_id] = now
        self._total_display(self.process_st_time["total"])
        
        if not self.total_only:
            process_display = self._display_all(now, total, desc, st_time)
            if self.terminal_y is not None:
                sys.stdout.write(f"\x1b7\x1b[{process_id + 1};{0}f{process_display}\x1b8")
                sys.stdout.flush()
            else:
                print(f"\x1b7\x1b[{process_id + 1};{0}f{process_display}\x1b8", flush=True)

    # Print global information
    def _total_display(self, st_time):
        if self.total_display_callable.value == 1:
            self.total_display_callable.value = 0
            
            cnt = sum([self.counts[i] for i in range(self.n_process)])
            if cnt - self.last_cnt.value >= self.log_step:
                total_display = self._display_all(cnt, self.__len__(), f"Total: ", st_time)
                self.last_cnt.value = cnt
    
                x = self.n_process + 1 if not self.total_only else 0
                # if self.terminal_y is not None:
                #     sys.stdout.write(f"\x1b7\x1b[{x};{0}f{total_display}\x1b8")
                #     sys.stdout.flush()
                # else:
                #     print(f"\x1b7\x1b[{x};{0}f{total_display}\x1b8", flush=True)
                print(f"\r\x1b7\x1b[{x};{0}f{total_display}\x1b8", flush=True, end="")
            
            self.total_display_callable.value = 1

    def run(self):
        """
        The function is used to run a multi-process task
        Returns: return the result of function '_aggregate()'
        """
        
        if self.split_strategy == "static":
            return self.run_static()
        
        elif self.split_strategy == "queue":
            return self.run_queue()
    
    def run_static(self):
        """
        Running multi-process task with static data splits
        """
        
        # import multiprocessing as mp
        import multiprocess as mp
        mp.set_start_method(self.start_method, force=True)
        
        # total number of data that is already processed
        self.counts = mp.Manager().dict({i: 0 for i in range(self.n_process)})
        
        # record start time for each process
        self.process_st_time = {"total": time.time()}
        
        # set a lock to call total number display
        self.total_display_callable = mp.Value('d', 1)
        
        # Save last log iteration number
        self.last_cnt = mp.Value('d', 0)
        
        num_per_process = ceil(self.__len__() / self.n_process)
        
        if self.save_path is not None:
            file_name, suffix = os.path.splitext(self.save_path)
        
        process_list = []
        sub_paths = []
        for i in range(self.n_process):
            st = i * num_per_process
            ed = st + num_per_process
            
            # construct slice and sub path for sub process
            data_slice = self.data[st: ed]
            
            sub_path = None
            # Create a directory to save sub-results
            if self.save_path is not None:
                save_dir = f"{file_name}{suffix}_temp"
                os.makedirs(save_dir, exist_ok=True)
                sub_path = f"{save_dir}/temp_{i}{suffix}"
            
            # construct sub process
            input_args = (i, data_slice, sub_path)
            self.process_st_time[i] = time.time()
            p = mp.Process(target=self._target_static, args=input_args)
            p.start()
            
            process_list.append(p)
            sub_paths.append(sub_path)
        
        for p in process_list:
            p.join()
        
        # aggregate results and remove temporary directory
        results = self._aggregate(self.save_path, sub_paths)
        if self.save_path is not None:
            save_dir = f"{file_name}{suffix}_temp"
            os.rmdir(save_dir)
        
        return results
    
    def run_queue(self):
        """
        Running multi-process task with shared queue
        """
        
        # import multiprocessing as mp
        import multiprocess as mp
        mp.set_start_method(self.start_method, force=True)
        
        # total number of data that is already processed
        self.counts = mp.Manager().dict({i: 0 for i in range(self.n_process)})
        
        # Initialize a queue to input data
        self.q = mp.Queue(self.__len__())
        for d in tqdm(self.data, "Input data to queue"):
            self.q.put(d)
        
        # record start time for each process
        self.process_st_time = {"total": time.time()}
        
        # set a lock to call total number display
        self.total_display_callable = mp.Value('d', 1)
        
        # Save last log iteration number
        self.last_cnt = mp.Value('d', 0)
        
        if self.save_path is not None:
            file_name, suffix = os.path.splitext(self.save_path)
        
        process_list = []
        sub_paths = []
        for i in range(self.n_process):
            sub_path = None
            # Create a directory to save sub-results
            if self.save_path is not None:
                save_dir = f"{file_name}{suffix}_temp"
                os.makedirs(save_dir, exist_ok=True)
                sub_path = f"{save_dir}/temp_{i}{suffix}"
            
            # construct sub process
            input_args = (i, sub_path)
            self.process_st_time[i] = time.time()
            p = mp.Process(target=self._target_queue, args=input_args)
            p.start()
            
            process_list.append(p)
            sub_paths.append(sub_path)
        
        for p in process_list:
            p.join()
        
        # aggregate results and remove temporary directory
        results = self._aggregate(self.save_path, sub_paths)
        if self.save_path is not None:
            save_dir = f"{file_name}{suffix}_temp"
            os.rmdir(save_dir)
        
        return results
    
    @abc.abstractmethod
    def _aggregate(self, final_path: str, sub_paths):
        """
        This function is used to aggregate results from sub processes into a file

        Args:
            final_path: path to save final results
            sub_paths : list of sub paths

        Returns: None or desirable results specified by user

        """
        raise NotImplementedError
    
    @abc.abstractmethod
    def _target_static(self, process_id, data, sub_path):
        """
        The main body to operate data in one process. This function is used when split_strategy is 'static'.

        Args:
            i       : process id
            data    : data slice
            sub_path: sub path to save results
        """
        raise NotImplementedError
    
    @abc.abstractmethod
    def _target_queue(self, process_id, sub_path):
        """
        The main body to operate data in one process. This function is used when split_strategy is 'queue'.

        Args:
            i       : process id
            sub_path: sub path to save results
        """
        raise NotImplementedError
    
    @abc.abstractmethod
    def __len__(self):
        raise NotImplementedError
    

class MultipleProcessRunnerSimplifier(MultipleProcessRunner):
    """
    A simplified version of MultipleProcessRunner.
    User only need to implement the function 'do', then it will be automatically executed
    in every iteration after call the function 'run'.
    If 'save_path' is specified, it will open a file in the 'sub_path' into which
    user can write results, and results will be aggregated into 'save_path'.
    
    The procedure would be like:
        ...
        with open(sub_path, 'w') as w:
            for i, d in enumerate(data):
                self.do(process_id, i, d, w) # You can write results into the file.
                ...
        
    The 'do' function should be like:
        def do(process_id, idx, data, writer):
            ...
    
    If 'save_path' is None, the argument 'writer' will be set to None.
    
    """
    
    def __init__(self, data, do, return_results=False, **kwargs):

        super().__init__(data=data, **kwargs)
        self.do = do
        self.return_results = return_results
    
    def run(self):
        self.start_time = time.time()
        return super().run()
    
    def _aggregate(self, final_path: str, sub_paths):
        results = []
            
        w = open(final_path, 'w') if final_path is not None else None
        
        if self.verbose:
            iterator = tqdm(enumerate(sub_paths), "Aggregating results...")
        else:
            iterator = enumerate(sub_paths)
        
        for i, sub_path in iterator:
            if sub_path is None and self.return_results:
                sub_path = f"MultipleProcessRunnerSimplifier_{self.start_time}_{i}.tmp"
            
            if sub_path is not None:
                with open(sub_path, 'r') as r:
                    for line in r:
                        if w is not None:
                            w.write(line)

                        if self.return_results:
                            results.append(line[:-1])
            
                os.remove(sub_path)
        
        return results
                
    def _target_static(self, process_id, data, sub_path):
        if sub_path is None and self.return_results:
            sub_path = f"MultipleProcessRunnerSimplifier_{self.start_time}_{process_id}.tmp"
            
        w = open(sub_path, 'w') if sub_path is not None else None
        for i, d in enumerate(data):
            self.do(process_id, i, d, w)
            if self.verbose:
                self.terminal_progress_bar(process_id, i + 1, len(data), f"Process{process_id} running...")
        
        if w is not None:
            w.close()
    
    def _target_queue(self, process_id, sub_path):
        if sub_path is None and self.return_results:
            sub_path = f"MultipleProcessRunnerSimplifier_{self.start_time}_{process_id}.tmp"
        
        w = open(sub_path, 'w') if sub_path is not None else None
        i = 0
        while not self.q.empty():
            d = self.q.get()
            self.do(process_id, i, d, w)
            if self.verbose:
                self.terminal_progress_bar(process_id, i + 1, self.__len__(), f"Process{process_id} running...")
            
            i += 1
            
        if w is not None:
            w.close()
        
    def __len__(self):
        return len(self.data)