Spaces:
Runtime error
Runtime error
import sys | |
import os | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
import json | |
from pathlib import Path | |
from tqdm import tqdm | |
from utils.openai_access import call_chatgpt | |
from utils.mpr import MultipleProcessRunnerSimplifier | |
from utils.generate_protein_prompt import generate_prompt | |
prompts = None | |
def _load_prompts(prompt_path): | |
global prompts | |
if prompts is None: | |
prompts = json.load(open(prompt_path, 'r')) | |
return prompts | |
def read_protein_ids(protein_id_path): | |
"""读取蛋白质ID列表""" | |
with open(protein_id_path, 'r') as f: | |
protein_ids = [line.strip() for line in f if line.strip()] | |
return protein_ids | |
def process_single_protein(process_id, idx, protein_id, writer, save_dir): | |
"""处理单个蛋白质的motif信息并生成摘要""" | |
try: | |
# prompt = generate_prompt(protein_id) | |
prompt = prompts[protein_id] | |
response = call_chatgpt(prompt) | |
# 写入单独的文件 | |
save_path = os.path.join(save_dir, f"{protein_id}.json") | |
with open(save_path, 'w') as f: | |
json.dump(response, f, indent=2) | |
except Exception as e: | |
print(f"Error processing protein {protein_id}: {str(e)}") | |
def get_missing_protein_ids(save_dir): | |
"""检查哪些蛋白质ID尚未成功生成数据""" | |
# 读取所有应该生成的protein_id | |
all_protein_ids = list(prompts.keys()) | |
# with open(all_protein_ids_path, 'r') as f: | |
# all_protein_ids = set(line.strip() for line in f if line.strip()) | |
# 存储问题protein_id(包括空文件和未生成的文件) | |
problem_protein_ids = set() | |
# 检查每个应该存在的protein_id | |
for protein_id in tqdm(all_protein_ids, desc="检查蛋白质数据文件"): | |
json_file = Path(save_dir) / f"{protein_id}.json" | |
# 如果文件不存在,加入问题列表 | |
if not json_file.exists(): | |
problem_protein_ids.add(protein_id) | |
continue | |
# 检查文件内容 | |
try: | |
with open(json_file, 'r') as f: | |
data = json.load(f) | |
# 检查文件内容是否为空或null | |
if data is None or len(data) == 0: | |
problem_protein_ids.add(protein_id) | |
json_file.unlink() # 删除空文件 | |
except (json.JSONDecodeError, Exception) as e: | |
# 如果JSON解析失败,也认为是问题文件 | |
problem_protein_ids.add(protein_id) | |
try: | |
json_file.unlink() # 删除损坏的文件 | |
except: | |
pass | |
return problem_protein_ids | |
def main(): | |
import argparse | |
parser = argparse.ArgumentParser() | |
# parser.add_argument("--all_protein_ids_path", type=str, | |
# default="/zhuangkai/projects/TTS4Protein/data/processed_data/protein_id@1024_go@10_covermotif_go.txt", | |
# help="Path to the file containing all protein IDs that should be generated") | |
parser.add_argument("--prompt_path", type=str, | |
default="data/processed_data/prompts@clean_test.json", | |
help="Path to the file containing prompts") | |
parser.add_argument("--n_process", type=int, default=64, | |
help="Number of parallel processes") | |
parser.add_argument("--save_dir", type=str, | |
default="data/clean_test_results_top2", | |
help="Directory to save results") | |
parser.add_argument("--max_iterations", type=int, default=3, | |
help="Maximum number of iterations to try generating all proteins") | |
args = parser.parse_args() | |
# 创建保存目录 | |
os.makedirs(args.save_dir, exist_ok=True) | |
# 加载提示 | |
_load_prompts(args.prompt_path) | |
print(f"已加载 {len(prompts)} 个提示") | |
# 循环检查和生成,直到所有蛋白质都已生成或达到最大迭代次数 | |
iteration = 0 | |
while iteration < args.max_iterations: | |
iteration += 1 | |
print(f"\n开始第 {iteration} 轮检查和生成") | |
# 获取缺失的蛋白质ID | |
missing_protein_ids = get_missing_protein_ids(args.save_dir) | |
# 如果没有缺失的蛋白质ID,则完成 | |
if not missing_protein_ids: | |
print("所有蛋白质数据已成功生成!") | |
break | |
print(f"发现 {len(missing_protein_ids)} 个缺失的蛋白质数据,准备生成") | |
# 将缺失的蛋白质ID列表转换为列表 | |
missing_protein_ids_list = sorted(list(missing_protein_ids)) | |
# 保存当前缺失的蛋白质ID列表,用于记录 | |
missing_ids_file = Path(args.save_dir) / f"missing_protein_ids_iteration_{iteration}.txt" | |
with open(missing_ids_file, 'w') as f: | |
for protein_id in missing_protein_ids_list: | |
f.write(f"{protein_id}\n") | |
# 使用多进程处理生成缺失的蛋白质数据 | |
mprs = MultipleProcessRunnerSimplifier( | |
data=missing_protein_ids_list, | |
do=lambda process_id, idx, protein_id, writer: process_single_protein(process_id, idx, protein_id, writer, args.save_dir), | |
n_process=args.n_process, | |
split_strategy="static" | |
) | |
mprs.run() | |
print(f"第 {iteration} 轮生成完成") | |
# 最后检查一次 | |
final_missing_ids = get_missing_protein_ids(args.save_dir) | |
if final_missing_ids: | |
print(f"经过 {iteration} 轮生成后,仍有 {len(final_missing_ids)} 个蛋白质数据未成功生成") | |
# 保存最终缺失的蛋白质ID列表 | |
final_missing_ids_file = Path(args.save_dir) / "final_missing_protein_ids.txt" | |
with open(final_missing_ids_file, 'w') as f: | |
for protein_id in sorted(final_missing_ids): | |
f.write(f"{protein_id}\n") | |
print(f"最终缺失的蛋白质ID已保存到: {final_missing_ids_file}") | |
else: | |
print(f"经过 {iteration} 轮生成,所有蛋白质数据已成功生成!") | |
if __name__ == "__main__": | |
main() | |