protein_rag / utils /generate_llm_answers4enzyme.py
ericzhang1122's picture
Upload folder using huggingface_hub
5c20520 verified
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import json
from pathlib import Path
from tqdm import tqdm
from utils.openai_access import call_chatgpt
from utils.mpr import MultipleProcessRunnerSimplifier
from utils.generate_protein_prompt import generate_prompt
prompts = None
def _load_prompts(prompt_path):
global prompts
if prompts is None:
prompts = json.load(open(prompt_path, 'r'))
return prompts
def read_protein_ids(protein_id_path):
"""读取蛋白质ID列表"""
with open(protein_id_path, 'r') as f:
protein_ids = [line.strip() for line in f if line.strip()]
return protein_ids
def process_single_protein(process_id, idx, protein_id, writer, save_dir):
"""处理单个蛋白质的motif信息并生成摘要"""
try:
# prompt = generate_prompt(protein_id)
prompt = prompts[protein_id]
response = call_chatgpt(prompt)
# 写入单独的文件
save_path = os.path.join(save_dir, f"{protein_id}.json")
with open(save_path, 'w') as f:
json.dump(response, f, indent=2)
except Exception as e:
print(f"Error processing protein {protein_id}: {str(e)}")
def get_missing_protein_ids(save_dir):
"""检查哪些蛋白质ID尚未成功生成数据"""
# 读取所有应该生成的protein_id
all_protein_ids = list(prompts.keys())
# with open(all_protein_ids_path, 'r') as f:
# all_protein_ids = set(line.strip() for line in f if line.strip())
# 存储问题protein_id(包括空文件和未生成的文件)
problem_protein_ids = set()
# 检查每个应该存在的protein_id
for protein_id in tqdm(all_protein_ids, desc="检查蛋白质数据文件"):
json_file = Path(save_dir) / f"{protein_id}.json"
# 如果文件不存在,加入问题列表
if not json_file.exists():
problem_protein_ids.add(protein_id)
continue
# 检查文件内容
try:
with open(json_file, 'r') as f:
data = json.load(f)
# 检查文件内容是否为空或null
if data is None or len(data) == 0:
problem_protein_ids.add(protein_id)
json_file.unlink() # 删除空文件
except (json.JSONDecodeError, Exception) as e:
# 如果JSON解析失败,也认为是问题文件
problem_protein_ids.add(protein_id)
try:
json_file.unlink() # 删除损坏的文件
except:
pass
return problem_protein_ids
def main():
import argparse
parser = argparse.ArgumentParser()
# parser.add_argument("--all_protein_ids_path", type=str,
# default="/zhuangkai/projects/TTS4Protein/data/processed_data/protein_id@1024_go@10_covermotif_go.txt",
# help="Path to the file containing all protein IDs that should be generated")
parser.add_argument("--prompt_path", type=str,
default="data/processed_data/prompts@clean_test.json",
help="Path to the file containing prompts")
parser.add_argument("--n_process", type=int, default=64,
help="Number of parallel processes")
parser.add_argument("--save_dir", type=str,
default="data/clean_test_results_top2",
help="Directory to save results")
parser.add_argument("--max_iterations", type=int, default=3,
help="Maximum number of iterations to try generating all proteins")
args = parser.parse_args()
# 创建保存目录
os.makedirs(args.save_dir, exist_ok=True)
# 加载提示
_load_prompts(args.prompt_path)
print(f"已加载 {len(prompts)} 个提示")
# 循环检查和生成,直到所有蛋白质都已生成或达到最大迭代次数
iteration = 0
while iteration < args.max_iterations:
iteration += 1
print(f"\n开始第 {iteration} 轮检查和生成")
# 获取缺失的蛋白质ID
missing_protein_ids = get_missing_protein_ids(args.save_dir)
# 如果没有缺失的蛋白质ID,则完成
if not missing_protein_ids:
print("所有蛋白质数据已成功生成!")
break
print(f"发现 {len(missing_protein_ids)} 个缺失的蛋白质数据,准备生成")
# 将缺失的蛋白质ID列表转换为列表
missing_protein_ids_list = sorted(list(missing_protein_ids))
# 保存当前缺失的蛋白质ID列表,用于记录
missing_ids_file = Path(args.save_dir) / f"missing_protein_ids_iteration_{iteration}.txt"
with open(missing_ids_file, 'w') as f:
for protein_id in missing_protein_ids_list:
f.write(f"{protein_id}\n")
# 使用多进程处理生成缺失的蛋白质数据
mprs = MultipleProcessRunnerSimplifier(
data=missing_protein_ids_list,
do=lambda process_id, idx, protein_id, writer: process_single_protein(process_id, idx, protein_id, writer, args.save_dir),
n_process=args.n_process,
split_strategy="static"
)
mprs.run()
print(f"第 {iteration} 轮生成完成")
# 最后检查一次
final_missing_ids = get_missing_protein_ids(args.save_dir)
if final_missing_ids:
print(f"经过 {iteration} 轮生成后,仍有 {len(final_missing_ids)} 个蛋白质数据未成功生成")
# 保存最终缺失的蛋白质ID列表
final_missing_ids_file = Path(args.save_dir) / "final_missing_protein_ids.txt"
with open(final_missing_ids_file, 'w') as f:
for protein_id in sorted(final_missing_ids):
f.write(f"{protein_id}\n")
print(f"最终缺失的蛋白质ID已保存到: {final_missing_ids_file}")
else:
print(f"经过 {iteration} 轮生成,所有蛋白质数据已成功生成!")
if __name__ == "__main__":
main()