import os import json import sys import argparse from typing import Dict, List, Optional from pathlib import Path from tqdm import tqdm # 添加必要的路径 root_path = os.path.dirname(os.path.abspath(__file__)) print(root_path) sys.path.append(root_path) sys.path.append(os.path.join(root_path, "Models/ProTrek")) # 导入所需模块 from interproscan import InterproScan from Bio.Blast.Applications import NcbiblastpCommandline from utils.utils import extract_interproscan_metrics, get_seqnid, extract_blast_metrics, rename_interproscan_keys from go_integration_pipeline import GOIntegrationPipeline from utils.generate_protein_prompt import generate_prompt, get_interpro_manager, get_lmdb_connection from utils.openai_access import call_chatgpt class IntegratedProteinPipeline: def __init__(self, blast_database: str = "uniprot_swissprot", expect_value: float = 0.01, interproscan_path: str = "interproscan/interproscan-5.75-106.0/interproscan.sh", interproscan_libraries: List[str] = None, go_topk: int = 2, selected_info_types: List[str] = None, pfam_descriptions_path: str = None, go_info_path: str = None, interpro_data_path: str = None, lmdb_path: str = None, args: argparse.Namespace = None): """ 整合蛋白质分析管道 Args: blast_database: BLAST数据库名称 expect_value: BLAST E-value阈值 interproscan_path: InterProScan程序路径 interproscan_libraries: InterProScan库列表 go_topk: GO整合的topk参数 selected_info_types: prompt生成时选择的信息类型 pfam_descriptions_path: Pfam描述文件路径 go_info_path: GO信息文件路径 interpro_data_path: InterPro数据文件路径 lmdb_path: LMDB数据库路径 """ self.blast_database = blast_database self.expect_value = expect_value self.interproscan_path = interproscan_path self.interproscan_libraries = interproscan_libraries or [ "PFAM", "PIRSR", "PROSITE_PROFILES", "SUPERFAMILY", "PRINTS", "PANTHER", "CDD", "GENE3D", "NCBIFAM", "SFLM", "MOBIDB_LITE", "COILS", "PROSITE_PATTERNS", "FUNFAM", "SMART" ] self.go_topk = go_topk self.selected_info_types = selected_info_types or ['motif', 'go'] # 文件路径配置 self.pfam_descriptions_path = pfam_descriptions_path self.go_info_path = go_info_path self.interpro_data_path = interpro_data_path self.lmdb_path = lmdb_path self.interproscan_info_path = args.interproscan_info_path self.blast_info_path = args.blast_info_path # 初始化GO整合管道 self.go_pipeline = GOIntegrationPipeline(topk=self.go_topk) # 初始化InterPro管理器(如果需要) self.interpro_manager = None other_types = [t for t in self.selected_info_types if t not in ['motif', 'go']] if other_types and self.interpro_data_path: self.interpro_manager = get_interpro_manager(self.interpro_data_path, None) def step1_run_blast_and_interproscan(self, input_fasta: str, temp_dir: str = "temp") -> tuple: """ 步骤1: 运行BLAST和InterProScan分析 Args: input_fasta: 输入FASTA文件路径 temp_dir: 临时文件目录 Returns: tuple: (interproscan_info, blast_info) """ print("步骤1: 运行BLAST和InterProScan分析...") # 创建临时目录 os.makedirs(temp_dir, exist_ok=True) # 获取序列字典 seq_dict = get_seqnid(input_fasta) print(f"读取到 {len(seq_dict)} 个序列") # 运行BLAST print("运行BLAST分析...") blast_xml = os.path.join(temp_dir, "blast_results.xml") blast_cmd = NcbiblastpCommandline( query=input_fasta, db=self.blast_database, out=blast_xml, outfmt=5, # XML格式 evalue=self.expect_value ) blast_cmd() # 提取BLAST结果 blast_results = extract_blast_metrics(blast_xml) blast_info = {} for uid, info in blast_results.items(): blast_info[uid] = {"sequence": seq_dict[uid], "blast_results": info} # 运行InterProScan print("运行InterProScan分析...") interproscan_json = os.path.join(temp_dir, "interproscan_results.json") interproscan = InterproScan(self.interproscan_path) input_args = { "fasta_file": input_fasta, "goterms": True, "pathways": True, "save_dir": interproscan_json } interproscan.run(**input_args) # 提取InterProScan结果 interproscan_results = extract_interproscan_metrics( interproscan_json, librarys=self.interproscan_libraries ) interproscan_info = {} for id, seq in seq_dict.items(): info = interproscan_results[seq] info = rename_interproscan_keys(info) interproscan_info[id] = {"sequence": seq, "interproscan_results": info} # 清理临时文件 if os.path.exists(blast_xml): os.remove(blast_xml) if os.path.exists(interproscan_json): os.remove(interproscan_json) print(f"步骤1完成: 处理了 {len(interproscan_info)} 个蛋白质") return interproscan_info, blast_info def step2_integrate_go_information(self, interproscan_info: Dict, blast_info: Dict) -> Dict: """ 步骤2: 整合GO信息 Args: interproscan_info: InterProScan结果 blast_info: BLAST结果 Returns: Dict: 整合后的GO信息 """ print("步骤2: 整合GO信息...") # 使用GO整合管道进行第一层筛选 protein_go_dict = self.go_pipeline.first_level_filtering(interproscan_info, blast_info) print(f"步骤2完成: 为 {len(protein_go_dict)} 个蛋白质整合了GO信息") return protein_go_dict def step3_generate_prompts(self, interproscan_info: Dict, blast_info: Dict, protein_go_dict: Dict) -> Dict: """ 步骤3: 生成蛋白质prompt Args: interproscan_info: InterProScan结果 blast_info: BLAST结果 protein_go_dict: 整合的GO信息 Returns: Dict: 蛋白质ID到prompt的映射(如果有lmdb则包含QA对) """ print("步骤3: 生成蛋白质prompt...") # 创建临时的GO整合文件格式(用于generate_prompt函数) temp_go_data = {} for protein_id, go_ids in protein_go_dict.items(): temp_go_data[protein_id] = go_ids prompts_data = {} if self.lmdb_path: # 如果有lmdb路径,处理QA数据 from utils.generate_protein_prompt import get_qa_data global_index = 0 for protein_id in tqdm(interproscan_info.keys(), desc="生成prompts"): # 获取QA对 qa_pairs = get_qa_data(protein_id, self.lmdb_path) for qa_pair in qa_pairs: question = qa_pair['question'] ground_truth = qa_pair['ground_truth'] # 生成prompt(需要修改generate_prompt函数以支持内存数据) prompt = self._generate_prompt_from_memory( protein_id, interproscan_info, temp_go_data, question ) if prompt: prompts_data[global_index] = { "index": global_index, "protein_id": protein_id, "prompt": prompt, "question": question, "ground_truth": ground_truth } global_index += 1 else: # 如果没有lmdb路径,按原来的方式处理 for protein_id in tqdm(interproscan_info.keys(), desc="生成prompts"): prompt = self._generate_prompt_from_memory( protein_id, interproscan_info, temp_go_data ) if prompt: prompts_data[protein_id] = prompt print(f"步骤3完成: 生成了 {len(prompts_data)} 个prompt") return prompts_data def _generate_prompt_from_memory(self, protein_id: str, interproscan_info: Dict, protein_go_dict: Dict, question: str = None) -> str: """ 从内存中的数据生成prompt,包含完整的motif和GO定义 """ try: from utils.protein_go_analysis import get_go_definition from jinja2 import Template from utils.generate_protein_prompt import get_prompt_template # 获取GO分析结果 go_ids = protein_go_dict.get(protein_id, []) go_annotations = [] all_related_definitions = {} if go_ids: for go_id in go_ids: # 确保GO ID格式正确 clean_go_id = go_id.split(":")[-1] if ":" in go_id else go_id go_annotations.append({"go_id": clean_go_id}) # 获取GO定义 definition = get_go_definition(clean_go_id,self.go_info_path) if definition: all_related_definitions[clean_go_id] = definition # 获取motif信息 motif_pfam = {} if self.pfam_descriptions_path: try: # 从interproscan结果中提取pfam信息 interproscan_results = interproscan_info[protein_id].get('interproscan_results', {}) pfam_entries = interproscan_results.get('pfam_id', []) # 加载pfam描述 with open(self.pfam_descriptions_path, 'r') as f: pfam_descriptions = json.load(f) # 构建motif_pfam字典 for entry in pfam_entries: for pfam_id, ipr_id in entry.items(): if pfam_id and pfam_id in pfam_descriptions: motif_pfam[pfam_id] = pfam_descriptions[pfam_id]['description'] except Exception as e: print(f"获取motif信息时出错: {str(e)}") # 获取InterPro描述信息 interpro_descriptions = {} other_types = [t for t in self.selected_info_types if t not in ['motif', 'go']] if other_types and self.interpro_manager: interpro_descriptions = self.interpro_manager.get_description(protein_id, other_types) # 准备模板数据 template_data = { "protein_id": protein_id, "selected_info_types": self.selected_info_types, "go_data": { "status": "success" if go_annotations else "no_data", "go_annotations": go_annotations, "all_related_definitions": all_related_definitions }, "motif_pfam": motif_pfam, "interpro_descriptions": interpro_descriptions, "question": question } # 使用模板生成prompt PROMPT_TEMPLATE = get_prompt_template(self.selected_info_types, self.lmdb_path) template = Template(PROMPT_TEMPLATE) return template.render(**template_data) except Exception as e: print(f"生成prompt时出错 (protein_id: {protein_id}): {str(e)}") # 如果出错,返回简化版本的prompt return self._generate_simple_prompt(protein_id, interproscan_info, protein_go_dict, question) def _generate_simple_prompt(self, protein_id: str, interproscan_info: Dict, protein_go_dict: Dict, question: str = None) -> str: """ 生成简化版本的prompt(作为备用) """ # 获取蛋白质序列 sequence = interproscan_info[protein_id].get('sequence', '') # 获取GO信息 go_ids = protein_go_dict.get(protein_id, []) # 获取motif信息 interproscan_results = interproscan_info[protein_id].get('interproscan_results', {}) pfam_entries = interproscan_results.get('pfam_id', []) # 简化的prompt生成逻辑 prompt_parts = [] if self.lmdb_path: from utils.prompts import FUNCTION_PROMPT prompt_parts.append(FUNCTION_PROMPT) else: from utils.prompts import ENZYME_PROMPT prompt_parts.append(ENZYME_PROMPT) prompt_parts.append("\ninput information:") # 添加motif信息 if 'motif' in self.selected_info_types and pfam_entries: prompt_parts.append("\nmotif:") for entry in pfam_entries: for key, value in entry.items(): if value: prompt_parts.append(f"{value}: 无详细描述") # 添加GO信息 if 'go' in self.selected_info_types and go_ids: prompt_parts.append("\nGO:") for i, go_id in enumerate(go_ids[:10], 1): prompt_parts.append(f"▢ GO term{i}: {go_id}") prompt_parts.append(f"• definition: 无详细定义") if question: prompt_parts.append(f"\nquestion: \n{question}") return "\n".join(prompt_parts) def step4_generate_llm_answers(self, prompts_data: Dict, save_dir: str) -> None: """ 步骤4: 生成LLM答案 Args: prompts_data: prompt数据 save_dir: 保存目录 """ print("步骤4: 生成LLM答案...") # 创建保存目录 os.makedirs(save_dir, exist_ok=True) if self.lmdb_path: # 如果有lmdb路径,处理QA数据 for index, qa_item in tqdm(prompts_data.items(), desc="生成LLM答案"): try: protein_id = qa_item['protein_id'] prompt = qa_item['prompt'] question = qa_item['question'] ground_truth = qa_item['ground_truth'] # 调用LLM生成答案 llm_response = call_chatgpt(prompt) # 构建结果数据 result = { 'protein_id': protein_id, 'index': index, 'question': question, 'ground_truth': ground_truth, 'llm_answer': llm_response } # 保存文件 save_path = os.path.join(save_dir, f"{protein_id}_{index}.json") with open(save_path, 'w') as f: json.dump(result, f, indent=2, ensure_ascii=False) except Exception as e: print(f"处理索引 {index} 时出错: {str(e)}") else: # 如果没有lmdb路径,按原来的方式处理 for protein_id, prompt in tqdm(prompts_data.items(), desc="生成LLM答案"): try: # 调用LLM生成答案 llm_response = call_chatgpt(prompt) # 构建结果数据 result = { 'protein_id': protein_id, 'prompt': prompt, 'llm_answer': llm_response } # 保存文件 save_path = os.path.join(save_dir, f"{protein_id}.json") with open(save_path, 'w') as f: json.dump(result, f, indent=2, ensure_ascii=False) except Exception as e: print(f"处理蛋白质 {protein_id} 时出错: {str(e)}") print(f"步骤4完成: 结果已保存到 {save_dir}") def run(self, input_fasta: str, output_dir: str, temp_dir: str = "temp"): """ 运行完整的工作流 Args: input_fasta: 输入FASTA文件路径 output_dir: 输出目录 temp_dir: 临时文件目录 """ print(f"开始运行整合蛋白质分析管道...") print(f"输入文件: {input_fasta}") print(f"输出目录: {output_dir}") # 创建输出目录 os.makedirs(output_dir, exist_ok=True) try: # 步骤1: 运行BLAST和InterProScan if self.interproscan_info_path is None or self.blast_info_path is None: interproscan_info, blast_info = self.step1_run_blast_and_interproscan( input_fasta, temp_dir ) else: interproscan_info = json.load(open(self.interproscan_info_path)) blast_info = json.load(open(self.blast_info_path)) # 步骤2: 整合GO信息 protein_go_dict = self.step2_integrate_go_information( interproscan_info, blast_info ) # 步骤3: 生成prompt prompts_data = self.step3_generate_prompts( interproscan_info, blast_info, protein_go_dict ) print(prompts_data) # 步骤4: 生成LLM答案 self.step4_generate_llm_answers(prompts_data, output_dir) print("整合管道运行完成!") except Exception as e: print(f"管道运行出错: {str(e)}") raise finally: # 清理临时目录 print(f"清理临时目录: {temp_dir}") if os.path.exists(temp_dir): import shutil shutil.rmtree(temp_dir) def main(): parser = argparse.ArgumentParser(description="整合蛋白质分析管道") parser.add_argument("--input_fasta", type=str, required=True, help="输入FASTA文件路径") parser.add_argument("--output_dir", type=str, required=True, help="输出目录") parser.add_argument("--temp_dir", type=str, default="temp", help="临时文件目录") parser.add_argument('--interproscan_info_path', type=str, default=None, help="InterProScan结果文件路径") parser.add_argument('--blast_info_path', type=str, default=None, help="BLAST结果文件路径") # BLAST参数 parser.add_argument("--blast_database", type=str, default="uniprot_swissprot", help="BLAST数据库") parser.add_argument("--expect_value", type=float, default=0.01, help="BLAST E-value阈值") # InterProScan参数 parser.add_argument("--interproscan_path", type=str, default="interproscan/interproscan-5.75-106.0/interproscan.sh", help="InterProScan程序路径") # GO整合参数 parser.add_argument("--go_topk", type=int, default=2, help="GO整合topk参数") # Prompt生成参数 parser.add_argument("--selected_info_types", type=str, nargs='+', default=['motif', 'go'], help="选择的信息类型") parser.add_argument("--pfam_descriptions_path", type=str, default='data/raw_data/all_pfam_descriptions.json', help="Pfam描述文件路径") parser.add_argument("--go_info_path", type=str, default='data/raw_data/go.json', help="GO信息文件路径") parser.add_argument("--interpro_data_path", type=str, default='data/raw_data/interpro_data.json', help="InterPro数据文件路径") parser.add_argument("--lmdb_path", type=str, help="LMDB数据库路径") args = parser.parse_args() # 创建管道实例 pipeline = IntegratedProteinPipeline( blast_database=args.blast_database, expect_value=args.expect_value, interproscan_path=args.interproscan_path, go_topk=args.go_topk, selected_info_types=args.selected_info_types, pfam_descriptions_path=args.pfam_descriptions_path, go_info_path=args.go_info_path, interpro_data_path=args.interpro_data_path, lmdb_path=args.lmdb_path, args=args ) # 运行管道 pipeline.run(args.input_fasta, args.output_dir, args.temp_dir) if __name__ == "__main__": main()