import sys import os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import json from pathlib import Path from tqdm import tqdm from utils.openai_access import call_chatgpt from utils.mpr import MultipleProcessRunnerSimplifier from utils.generate_protein_prompt import generate_prompt qa_data = None def _load_qa_data(prompt_path): global qa_data if qa_data is None: qa_data = {} with open(prompt_path, 'r') as f: for line in f: if line.strip(): item = json.loads(line.strip()) qa_data[item['index']] = item return qa_data def process_single_qa(process_id, idx, qa_index, writer, save_dir): """处理单个QA对并生成答案""" try: qa_item = qa_data[qa_index] protein_id = qa_item['protein_id'] prompt = qa_item['prompt'] question = qa_item['question'] ground_truth = qa_item['ground_truth'] # 调用LLM生成答案 llm_response = call_chatgpt(prompt) # 构建结果数据 result = { 'protein_id': protein_id, 'index': qa_index, 'question': question, 'ground_truth': ground_truth, 'llm_answer': llm_response } # 保存文件,文件名使用protein_id和index save_path = os.path.join(save_dir, f"{protein_id}_{qa_index}.json") with open(save_path, 'w') as f: json.dump(result, f, indent=2, ensure_ascii=False) except Exception as e: print(f"Error processing QA index {qa_index}: {str(e)}") def get_missing_qa_indices(save_dir): """检查哪些QA索引尚未成功生成数据""" # 获取所有应该生成的qa索引 all_qa_indices = list(qa_data.keys()) # 存储问题qa索引(包括空文件和未生成的文件) problem_qa_indices = set() # 检查每个应该存在的qa索引 for qa_index in tqdm(all_qa_indices, desc="检查QA数据文件"): protein_id = qa_data[qa_index]['protein_id'] json_file = Path(save_dir) / f"{protein_id}_{qa_index}.json" # 如果文件不存在,加入问题列表 if not json_file.exists(): problem_qa_indices.add(qa_index) continue # 检查文件内容 try: with open(json_file, 'r') as f: data = json.load(f) # 检查文件内容是否为空或缺少必要字段 if (data is None or len(data) == 0 or 'llm_answer' not in data or data.get('llm_answer') is None or data.get('llm_answer') == ''): problem_qa_indices.add(qa_index) json_file.unlink() # 删除空文件或不完整文件 except (json.JSONDecodeError, Exception) as e: # 如果JSON解析失败,也认为是问题文件 problem_qa_indices.add(qa_index) try: json_file.unlink() # 删除损坏的文件 except: pass return problem_qa_indices def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument("--prompt_path", type=str, default="data/processed_data/prompts@clean_test.jsonl", help="Path to the JSONL file containing QA prompts") parser.add_argument("--n_process", type=int, default=64, help="Number of parallel processes") parser.add_argument("--save_dir", type=str, default="data/clean_test_results_top2", help="Directory to save results") parser.add_argument("--max_iterations", type=int, default=3, help="Maximum number of iterations to try generating all QA pairs") args = parser.parse_args() # 创建保存目录 os.makedirs(args.save_dir, exist_ok=True) # 加载QA数据 _load_qa_data(args.prompt_path) print(f"已加载 {len(qa_data)} 个QA对") # 循环检查和生成,直到所有QA对都已生成或达到最大迭代次数 iteration = 0 while iteration < args.max_iterations: iteration += 1 print(f"\n开始第 {iteration} 轮检查和生成") # 获取缺失的QA索引 missing_qa_indices = get_missing_qa_indices(args.save_dir) # 如果没有缺失的QA索引,则完成 if not missing_qa_indices: print("所有QA数据已成功生成!") break print(f"发现 {len(missing_qa_indices)} 个缺失的QA数据,准备生成") # 将缺失的QA索引列表转换为列表 missing_qa_indices_list = sorted(list(missing_qa_indices)) # 保存当前缺失的QA索引列表,用于记录 missing_ids_file = Path(args.save_dir) / f"missing_qa_indices_iteration_{iteration}.txt" with open(missing_ids_file, 'w') as f: for qa_index in missing_qa_indices_list: protein_id = qa_data[qa_index]['protein_id'] f.write(f"{protein_id}_{qa_index}\n") # 使用多进程处理生成缺失的QA数据 mprs = MultipleProcessRunnerSimplifier( data=missing_qa_indices_list, do=lambda process_id, idx, qa_index, writer: process_single_qa(process_id, idx, qa_index, writer, args.save_dir), n_process=args.n_process, split_strategy="static" ) mprs.run() print(f"第 {iteration} 轮生成完成") # 最后检查一次 final_missing_indices = get_missing_qa_indices(args.save_dir) if final_missing_indices: print(f"经过 {iteration} 轮生成后,仍有 {len(final_missing_indices)} 个QA数据未成功生成") # 保存最终缺失的QA索引列表 final_missing_ids_file = Path(args.save_dir) / "final_missing_qa_indices.txt" with open(final_missing_ids_file, 'w') as f: for qa_index in sorted(final_missing_indices): protein_id = qa_data[qa_index]['protein_id'] f.write(f"{protein_id}_{qa_index}\n") print(f"最终缺失的QA索引已保存到: {final_missing_ids_file}") else: print(f"经过 {iteration} 轮生成,所有QA数据已成功生成!") if __name__ == "__main__": main()