erikbeltran commited on
Commit
4989e93
·
verified ·
1 Parent(s): 89b9a2b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -269
app.py CHANGED
@@ -1,21 +1,9 @@
1
  import os
2
  import gradio as gr
3
- import json
4
- import logging
5
  import torch
6
- from PIL import Image
7
- import spaces
8
- from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
9
- from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
10
-
11
- from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
12
- import copy
13
  import random
14
- import time
15
-
16
- # Load LoRAs from JSON file
17
- with open('loras.json', 'r') as f:
18
- loras = json.load(f)
19
 
20
  # Initialize the base model
21
  dtype = torch.bfloat16
@@ -23,274 +11,62 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
23
  base_model = "black-forest-labs/FLUX.1-dev"
24
 
25
  taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
26
- good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
27
  pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
28
 
29
  MAX_SEED = 2**32-1
30
 
31
- pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
 
 
32
 
33
- class calculateDuration:
34
- def __init__(self, activity_name=""):
35
- self.activity_name = activity_name
36
-
37
- def __enter__(self):
38
- self.start_time = time.time()
39
- return self
40
-
41
- def __exit__(self, exc_type, exc_value, traceback):
42
- self.end_time = time.time()
43
- self.elapsed_time = self.end_time - self.start_time
44
- if self.activity_name:
45
- print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
46
- else:
47
- print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
48
-
49
- def update_selection(evt: gr.SelectData, width, height):
50
- selected_lora = loras[evt.index]
51
- new_placeholder = f"Type a prompt for {selected_lora['title']}"
52
- lora_repo = selected_lora["repo"]
53
- updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
54
- if "aspect" in selected_lora:
55
- if selected_lora["aspect"] == "portrait":
56
- width = 768
57
- height = 1024
58
- elif selected_lora["aspect"] == "landscape":
59
- width = 1024
60
- height = 768
61
- else:
62
- width = 1024
63
- height = 1024
64
- return (
65
- gr.update(placeholder=new_placeholder),
66
- updated_text,
67
- evt.index,
68
- width,
69
- height,
70
- )
71
 
72
  @spaces.GPU(duration=70)
73
- def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
74
- pipe.to("cuda")
 
 
 
 
75
  generator = torch.Generator(device="cuda").manual_seed(seed)
76
- with calculateDuration("Generating image"):
77
- # Generate image
78
- for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
79
- prompt=prompt_mash,
80
- num_inference_steps=steps,
81
- guidance_scale=cfg_scale,
82
- width=width,
83
- height=height,
84
- generator=generator,
85
- joint_attention_kwargs={"scale": lora_scale},
86
- output_type="pil",
87
- good_vae=good_vae,
88
- ):
89
- yield img
90
-
91
- def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
92
- if selected_index is None:
93
- raise gr.Error("You must select a LoRA before proceeding.")
94
- selected_lora = loras[selected_index]
95
- lora_path = selected_lora["repo"]
96
- trigger_word = selected_lora["trigger_word"]
97
- if(trigger_word):
98
- if "trigger_position" in selected_lora:
99
- if selected_lora["trigger_position"] == "prepend":
100
- prompt_mash = f"{trigger_word} {prompt}"
101
- else:
102
- prompt_mash = f"{prompt} {trigger_word}"
103
- else:
104
- prompt_mash = f"{trigger_word} {prompt}"
105
- else:
106
- prompt_mash = prompt
107
-
108
- with calculateDuration("Unloading LoRA"):
109
- pipe.unload_lora_weights()
110
-
111
- # Load LoRA weights
112
- with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
113
- if "weights" in selected_lora:
114
- pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
115
- else:
116
- pipe.load_lora_weights(lora_path)
117
-
118
- # Set random seed for reproducibility
119
- with calculateDuration("Randomizing seed"):
120
- if randomize_seed:
121
- seed = random.randint(0, MAX_SEED)
122
-
123
- image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
124
 
125
- # Consume the generator to get the final image
126
- final_image = None
127
- step_counter = 0
128
- for image in image_generator:
129
- step_counter+=1
130
- final_image = image
131
- progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
132
- yield image, seed, gr.update(value=progress_bar, visible=True)
133
-
134
- yield final_image, seed, gr.update(value=progress_bar, visible=False)
135
-
136
- def get_huggingface_safetensors(link):
137
- split_link = link.split("/")
138
- if(len(split_link) == 2):
139
- model_card = ModelCard.load(link)
140
- base_model = model_card.data.get("base_model")
141
- print(base_model)
142
- if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
143
- raise Exception("Not a FLUX LoRA!")
144
- image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
145
- trigger_word = model_card.data.get("instance_prompt", "")
146
- image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
147
- fs = HfFileSystem()
148
- try:
149
- list_of_files = fs.ls(link, detail=False)
150
- for file in list_of_files:
151
- if(file.endswith(".safetensors")):
152
- safetensors_name = file.split("/")[-1]
153
- if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
154
- image_elements = file.split("/")
155
- image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
156
- except Exception as e:
157
- print(e)
158
- gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
159
- raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
160
- return split_link[1], link, safetensors_name, trigger_word, image_url
161
-
162
- def check_custom_model(link):
163
- if(link.startswith("https://")):
164
- if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
165
- link_split = link.split("huggingface.co/")
166
- return get_huggingface_safetensors(link_split[1])
167
- else:
168
- return get_huggingface_safetensors(link)
169
-
170
- def add_custom_lora(custom_lora):
171
- global loras
172
- if(custom_lora):
173
- try:
174
- title, repo, path, trigger_word, image = check_custom_model(custom_lora)
175
- print(f"Loaded custom LoRA: {repo}")
176
- card = f'''
177
- <div class="custom_lora_card">
178
- <span>Loaded custom LoRA:</span>
179
- <div class="card_internal">
180
- <img src="{image}" />
181
- <div>
182
- <h3>{title}</h3>
183
- <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
184
- </div>
185
- </div>
186
- </div>
187
- '''
188
- existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
189
- if(not existing_item_index):
190
- new_item = {
191
- "image": image,
192
- "title": title,
193
- "repo": repo,
194
- "weights": path,
195
- "trigger_word": trigger_word
196
- }
197
- print(new_item)
198
- existing_item_index = len(loras)
199
- loras.append(new_item)
200
-
201
- return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
202
- except Exception as e:
203
- gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
204
- return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, ""
205
- else:
206
- return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
207
-
208
- def remove_custom_lora():
209
- return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
210
 
211
- run_lora.zerogpu = True
 
212
 
213
- css = '''
214
- #gen_btn{height: 100%}
215
- #title{text-align: center}
216
- #title h1{font-size: 3em; display:inline-flex; align-items:center}
217
- #title img{width: 100px; margin-right: 0.5em}
218
- #gallery .grid-wrap{height: 10vh}
219
- #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
220
- .card_internal{display: flex;height: 100px;margin-top: .5em}
221
- .card_internal img{margin-right: 1em}
222
- .styler{--form-gap-width: 0px !important}
223
- #progress{height:30px}
224
- #progress .generating{display:none}
225
- .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
226
- .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
227
- '''
228
- with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
229
- title = gr.HTML(
230
- """<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> FLUX LoRA the Explorer</h1>""",
231
- elem_id="title",
232
- )
233
- selected_index = gr.State(None)
234
- with gr.Row():
235
- with gr.Column(scale=3):
236
- prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
237
- with gr.Column(scale=1, elem_id="gen_column"):
238
- generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
239
  with gr.Row():
240
- with gr.Column():
241
- selected_info = gr.Markdown("")
242
- gallery = gr.Gallery(
243
- [(item["image"], item["title"]) for item in loras],
244
- label="LoRA Gallery",
245
- allow_preview=False,
246
- columns=3,
247
- elem_id="gallery"
248
- )
249
- with gr.Group():
250
- custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
251
- gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
252
- custom_lora_info = gr.HTML(visible=False)
253
- custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
254
- with gr.Column():
255
- progress_bar = gr.Markdown(elem_id="progress",visible=False)
256
- result = gr.Image(label="Generated Image")
257
-
258
  with gr.Row():
259
- with gr.Accordion("Advanced Settings", open=False):
260
- with gr.Column():
261
- with gr.Row():
262
- cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
263
- steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
264
-
265
- with gr.Row():
266
- width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
267
- height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
268
-
269
- with gr.Row():
270
- randomize_seed = gr.Checkbox(True, label="Randomize seed")
271
- seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
272
- lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
273
-
274
- gallery.select(
275
- update_selection,
276
- inputs=[width, height],
277
- outputs=[prompt, selected_info, selected_index, width, height]
278
- )
279
- custom_lora.input(
280
- add_custom_lora,
281
- inputs=[custom_lora],
282
- outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
283
- )
284
- custom_lora_button.click(
285
- remove_custom_lora,
286
- outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
287
- )
288
- gr.on(
289
- triggers=[generate_button.click, prompt.submit],
290
  fn=run_lora,
291
- inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
292
- outputs=[result, seed, progress_bar]
293
  )
294
 
295
- app.queue()
296
- app.launch()
 
 
1
  import os
2
  import gradio as gr
 
 
3
  import torch
4
+ from diffusers import DiffusionPipeline, AutoencoderTiny
 
 
 
 
 
 
5
  import random
6
+ import spaces
 
 
 
 
7
 
8
  # Initialize the base model
9
  dtype = torch.bfloat16
 
11
  base_model = "black-forest-labs/FLUX.1-dev"
12
 
13
  taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
 
14
  pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
15
 
16
  MAX_SEED = 2**32-1
17
 
18
+ # Hidden variables (you would set these based on your specific LoRA)
19
+ LORA_PATH = "path/to/your/lora"
20
+ TRIGGER_WORD = "your_trigger_word"
21
 
22
+ # Load LoRA weights (do this once at startup)
23
+ pipe.load_lora_weights(LORA_PATH)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  @spaces.GPU(duration=70)
26
+ def generate_image(prompt, width, height):
27
+ # Combine prompt with trigger word
28
+ full_prompt = f"{TRIGGER_WORD} {prompt}"
29
+
30
+ # Set up generation parameters
31
+ seed = random.randint(0, MAX_SEED)
32
  generator = torch.Generator(device="cuda").manual_seed(seed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
+ # Generate image
35
+ image = pipe(
36
+ prompt=full_prompt,
37
+ num_inference_steps=28,
38
+ guidance_scale=3.5,
39
+ width=width,
40
+ height=height,
41
+ generator=generator,
42
+ ).images[0]
43
+
44
+ return image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
+ def run_lora(prompt, width, height):
47
+ return generate_image(prompt, width, height)
48
 
49
+ # Set up the Gradio interface
50
+ with gr.Blocks() as app:
51
+ gr.Markdown("# LoRA Image Generator")
52
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  with gr.Row():
54
+ prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt here")
55
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  with gr.Row():
57
+ width = gr.Slider(label="Width", minimum=256, maximum=1024, step=64, value=512)
58
+ height = gr.Slider(label="Height", minimum=256, maximum=1024, step=64, value=512)
59
+
60
+ generate_button = gr.Button("Generate Image")
61
+
62
+ output_image = gr.Image(label="Generated Image")
63
+
64
+ generate_button.click(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  fn=run_lora,
66
+ inputs=[prompt, width, height],
67
+ outputs=[output_image]
68
  )
69
 
70
+ if __name__ == "__main__":
71
+ app.queue()
72
+ app.launch()