File size: 5,990 Bytes
03310c4
5d7d186
 
 
 
70ca1ab
03310c4
7851025
03310c4
5d7d186
 
 
 
 
 
 
 
 
03310c4
 
5d7d186
 
 
 
 
 
 
 
 
1b04af5
03310c4
 
713da25
5d7d186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58a8b47
5d7d186
 
 
 
 
 
 
 
 
03310c4
 
 
5d7d186
58a8b47
5d7d186
 
 
 
 
 
 
 
 
 
 
 
58a8b47
5d7d186
 
 
fbd7eda
5d7d186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0faccd
 
 
7851025
 
 
d0faccd
1b04af5
5d7d186
d0faccd
7851025
03310c4
5d7d186
d0faccd
 
 
5d7d186
d0faccd
03310c4
1b04af5
 
 
 
 
 
d0faccd
1b04af5
d0faccd
5d7d186
1b04af5
d0faccd
 
5d7d186
d0faccd
 
 
5d7d186
d0faccd
 
 
 
 
9461725
 
 
 
 
 
d0faccd
 
1b04af5
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import getpass
import os
from dotenv import load_dotenv
from typing import TypedDict, List, Dict, Any, Optional, Annotated

from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI # Added ChatGoogleGenerativeAI
from langchain_groq import ChatGroq

from langgraph.graph import StateGraph, MessagesState, START, END
from langgraph.graph.message import add_messages
from langchain_core.messages import SystemMessage, HumanMessage, AnyMessage, AIMessage
from langchain_core.messages.ai import subtract_usage

from langchain.tools import Tool
from langchain_core.tools import tool
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.tools import DuckDuckGoSearchResults
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
from langchain_community.utilities import ArxivAPIWrapper
from langchain_community.retrievers import BM25Retriever

from langgraph.prebuilt import ToolNode, tools_condition


# load environment variables
load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
print(f"DEBUG: HUGGINGFACEHUB_API_TOKEN = {HUGGINGFACEHUB_API_TOKEN}")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
print(f"DEBUG: GOOGLE_API_KEY = {GOOGLE_API_KEY}")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")


# maths tool
@tool
def add(a:int, b:int) -> int:
    """add two numbers.
    args:
        a: first int
        b: second int
    """
    return a + b


@tool
def subtract(a:int, b:int) -> int:
    """subtract two numbers.
    args:
        a: first int
        b: second int
    """
    return a - b


@tool
def multiply(a:int, b:int) -> int:
    """multiply two numbers.
    args:
        a: first int
        b: second int
    """
    return a * b


@tool
def divide(a:int, b:int) -> float:
    """divide two numbers.
    args:
        a: first int
        b: second int
    """
    try:
        # Attempt the division
        result = a / b
        return result
    except ZeroDivisionError:
        # Handle the case where b is zero
        raise ValueError("Cannot divide by zero.")


@tool
def modulus(a:int, b:int) -> int:
    """modulus remainder of two numbers.
    args:
        a: first int
        b: second int
    """
    return a % b


# wikipedia search tool
@tool
def search_wiki(query: str) -> Dict[str, str]:
    """search wikipedia with a query
    args:
        query: a search query
    """
    docs = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())
    docs.run(query)
    formatted_result = f'<Document source="{docs.metadata["source"]}" page="{docs.metadata.get("page", "")}"/>\n{docs.page_content}\n</Document>'
    return formatted_result


# internet search tool
@tool
def search_web(query: str) -> Dict[str, str]:
    """search internet with a query
    args:
        query: a search query
    """
    wrapper = DuckDuckGoSearchAPIWrapper(region="en-us", max_results=2)
    docs = DuckDuckGoSearchResults(api_wrapper=wrapper)
    docs.invoke(query)
    formatted_result = f'<Document source="{docs.metadata["source"]}" page="{docs.metadata.get("page", "")}"/>\n{docs.page_content}\n</Document>'
    return formatted_result


# ArXiv search tool
@tool
def search_arxiv(query: str) -> Dict[str, str]:
    """search ArXiv for the paper with the given identifier
    args:
        query: a search identifier
    """
    arxiv = ArxivAPIWrapper()
    docs = arxiv.run(query)
    formatted_result = f'<Document source="{docs.metadata["source"]}" page="{docs.metadata.get("page", "")}"/>\n{docs.page_content}\n</Document>'
    return formatted_result


# build retriever
# bm25_retriever = BM25Retriever.from_documents(docs)


# load system prompt from file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()


# init system message
sys_msg = SystemMessage(content=system_prompt)


tools = [
    add,
    subtract,
    multiply,
    divide,
    modulus,
    search_wiki,
    search_web,
    search_arxiv
]


# build graph function
def build_graph():
    # llm
    llm = ChatGroq(
        model="qwen-qwq-32b",
        temperature=0,
    )
    print(f"DEBUG: llm object = {llm}")

    # bind tools to llm
    llm_with_tools = llm.bind_tools(tools)
    print(f"DEBUG: llm_with_tools object = {llm_with_tools}")

    # generate AgentState and Agent graph
    class AgentState(TypedDict):
        messages: Annotated[list[AnyMessage], add_messages]

    def assistant(state: AgentState):
        result = llm_with_tools.invoke(state["messages"])
        # Ensure the result is always wrapped in a list, even if invoke returns a single message
        # Add usage information if it's not already present
        if isinstance(result, AIMessage) and result.usage_metadata is None:
             # Add dummy usage metadata if none exists
            result.usage_metadata = {"input_tokens": 0, "output_tokens": 0, "total_tokens": 0}

        return {
            "messages": [result]
        }


    # build graph
    builder = StateGraph(AgentState)

    # define nodes
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))

    # define edges
    builder.add_edge(START, "assistant")
    builder.add_conditional_edges(
        "assistant",
        tools_condition,
        {
            # If the latest message requires a tool, route to tools
            "tools": "tools",
            # Otherwise, provide a direct response
            END: END,
        }
    )
    builder.add_edge("tools", "assistant")

    return builder.compile()


if __name__ == "__main__":
    question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    graph = build_graph()
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages})
    for m in messages["messages"]:
        m.pretty_print()