errchh
commited on
Commit
·
5682fff
1
Parent(s):
2cb2810
fix stop iternation
Browse files- app.py +11 -2
- backup/agent.py +198 -0
- backup/app.py +202 -0
app.py
CHANGED
@@ -22,8 +22,17 @@ class BasicAgent:
|
|
22 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
23 |
messages = [HumanMessage(content=question)]
|
24 |
result = self.graph.invoke({"messages": messages})
|
25 |
-
answer
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
29 |
"""
|
|
|
22 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
23 |
messages = [HumanMessage(content=question)]
|
24 |
result = self.graph.invoke({"messages": messages})
|
25 |
+
# Extract the final answer message from the state
|
26 |
+
# The final message should be the content of the last AIMessage
|
27 |
+
submitted_answer = "Could not get answer from agent output." # Default if extraction fails
|
28 |
+
if result and "messages" in result:
|
29 |
+
for msg in reversed(result["messages"]): # Look for the last AI message
|
30 |
+
# Check if the message is an AIMessage and has content
|
31 |
+
if isinstance(msg, AIMessage) and hasattr(msg, 'content') and msg.content:
|
32 |
+
submitted_answer = msg.content
|
33 |
+
break # Found the last AI message content
|
34 |
+
|
35 |
+
return submitted_answer
|
36 |
|
37 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
38 |
"""
|
backup/agent.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import libraries for langgraph, huggingface
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from typing import TypedDict, List, Dict, Any, Optional, Annotated
|
5 |
+
|
6 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
7 |
+
|
8 |
+
from langgraph.graph import StateGraph, MessagesState, START, END
|
9 |
+
from langgraph.graph.message import add_messages
|
10 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AnyMessage, AIMessage
|
11 |
+
from langchain_core.messages.ai import subtract_usage
|
12 |
+
|
13 |
+
from langchain.tools import Tool
|
14 |
+
from langchain_core.tools import tool
|
15 |
+
from langchain_community.tools import WikipediaQueryRun
|
16 |
+
from langchain_community.utilities import WikipediaAPIWrapper
|
17 |
+
from langchain_community.utilities import SerpAPIWrapper
|
18 |
+
from langchain_community.utilities import ArxivAPIWrapper
|
19 |
+
from langchain_community.retrievers import BM25Retriever
|
20 |
+
|
21 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
22 |
+
|
23 |
+
|
24 |
+
# load environment variables
|
25 |
+
load_dotenv()
|
26 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
27 |
+
|
28 |
+
|
29 |
+
# maths tool
|
30 |
+
@tool
|
31 |
+
def add(a:int, b:int) -> int:
|
32 |
+
"""add two numbers.
|
33 |
+
args:
|
34 |
+
a: first int
|
35 |
+
b: second int
|
36 |
+
"""
|
37 |
+
return a + b
|
38 |
+
|
39 |
+
|
40 |
+
@tool
|
41 |
+
def subtract(a:int, b:int) -> int:
|
42 |
+
"""subtract two numbers.
|
43 |
+
args:
|
44 |
+
a: first int
|
45 |
+
b: second int
|
46 |
+
"""
|
47 |
+
return a - b
|
48 |
+
|
49 |
+
|
50 |
+
@tool
|
51 |
+
def multiply(a:int, b:int) -> int:
|
52 |
+
"""multiply two numbers.
|
53 |
+
args:
|
54 |
+
a: first int
|
55 |
+
b: second int
|
56 |
+
"""
|
57 |
+
return a * b
|
58 |
+
|
59 |
+
|
60 |
+
@tool
|
61 |
+
def divide(a:int, b:int) -> float:
|
62 |
+
"""divide two numbers.
|
63 |
+
args:
|
64 |
+
a: first int
|
65 |
+
b: second int
|
66 |
+
"""
|
67 |
+
try:
|
68 |
+
# Attempt the division
|
69 |
+
result = a / b
|
70 |
+
return result
|
71 |
+
except ZeroDivisionError:
|
72 |
+
# Handle the case where b is zero
|
73 |
+
raise ValueError("Cannot divide by zero.")
|
74 |
+
|
75 |
+
|
76 |
+
@tool
|
77 |
+
def modulus(a:int, b:int) -> int:
|
78 |
+
"""modulus remainder of two numbers.
|
79 |
+
args:
|
80 |
+
a: first int
|
81 |
+
b: second int
|
82 |
+
"""
|
83 |
+
return a % b
|
84 |
+
|
85 |
+
|
86 |
+
# wikipedia search tool
|
87 |
+
@tool
|
88 |
+
def search_wiki(query: str) -> Dict[str, str]:
|
89 |
+
"""search wikipedia with a query
|
90 |
+
args:
|
91 |
+
query: a search query
|
92 |
+
"""
|
93 |
+
docs = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())
|
94 |
+
docs.run(query)
|
95 |
+
formatted_result = f'<Document source="{docs.metadata["source"]}" page="{docs.metadata.get("page", "")}"/>\n{docs.page_content}\n</Document>'
|
96 |
+
return {"wiki_results": formatted_result}
|
97 |
+
|
98 |
+
|
99 |
+
# internet search tool
|
100 |
+
@tool
|
101 |
+
def search_web(query: str) -> Dict[str, str]:
|
102 |
+
"""search internet with a query
|
103 |
+
args:
|
104 |
+
query: a search query
|
105 |
+
"""
|
106 |
+
docs = SerpAPIWrapper()
|
107 |
+
docs.run(query)
|
108 |
+
formatted_result = f'<Document source="{docs.metadata["source"]}" page="{docs.metadata.get("page", "")}"/>\n{docs.page_content}\n</Document>'
|
109 |
+
return {"wiki_results": formatted_result}
|
110 |
+
|
111 |
+
|
112 |
+
# ArXiv search tool
|
113 |
+
@tool
|
114 |
+
def search_arxiv(query: str) -> Dict[str, str]:
|
115 |
+
"""search ArXiv for the paper with the given identifier
|
116 |
+
args:
|
117 |
+
query: a search identifier
|
118 |
+
"""
|
119 |
+
arxiv = ArxivAPIWrapper()
|
120 |
+
docs = arxiv.run(query)
|
121 |
+
formatted_result = f'<Document source="{docs.metadata["source"]}" page="{docs.metadata.get("page", "")}"/>\n{docs.page_content}\n</Document>'
|
122 |
+
return {"wiki_results": formatted_result}
|
123 |
+
|
124 |
+
|
125 |
+
# build retriever
|
126 |
+
# bm25_retriever = BM25Retriever.from_documents(docs)
|
127 |
+
|
128 |
+
|
129 |
+
# load system prompt from file
|
130 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
131 |
+
system_prompt = f.read()
|
132 |
+
|
133 |
+
|
134 |
+
# init system message
|
135 |
+
sys_msg = SystemMessage(content=system_prompt)
|
136 |
+
|
137 |
+
|
138 |
+
tools = [
|
139 |
+
add,
|
140 |
+
subtract,
|
141 |
+
multiply,
|
142 |
+
divide,
|
143 |
+
modulus,
|
144 |
+
search_wiki,
|
145 |
+
search_web,
|
146 |
+
search_arxiv
|
147 |
+
]
|
148 |
+
|
149 |
+
|
150 |
+
# build graph function
|
151 |
+
def build_graph():
|
152 |
+
# llm
|
153 |
+
llm = HuggingFaceEndpoint(
|
154 |
+
repo_id = "microsoft/Phi-4-reasoning-plus",
|
155 |
+
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
|
156 |
+
)
|
157 |
+
|
158 |
+
chat = ChatHuggingFace(llm=llm, verbose=False)
|
159 |
+
|
160 |
+
# bind tools to llm
|
161 |
+
chat_with_tools = chat.bind_tools(tools)
|
162 |
+
|
163 |
+
# generate AgentState and Agent graph
|
164 |
+
class AgentState(TypedDict):
|
165 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
166 |
+
|
167 |
+
def assistant(state: AgentState):
|
168 |
+
return {
|
169 |
+
"messages": [chat_with_tools.invoke(state["messages"])],
|
170 |
+
}
|
171 |
+
|
172 |
+
# build graph
|
173 |
+
builder = StateGraph(AgentState)
|
174 |
+
|
175 |
+
# define nodes
|
176 |
+
builder.add_node("assistant", assistant)
|
177 |
+
builder.add_node("tools", ToolNode(tools))
|
178 |
+
|
179 |
+
# define edges
|
180 |
+
builder.add_edge(START, "assistant")
|
181 |
+
builder.add_conditional_edges(
|
182 |
+
"assistant",
|
183 |
+
# If the latest message requires a tool, route to tools
|
184 |
+
# Otherwise, provide a direct response
|
185 |
+
tools_condition,
|
186 |
+
)
|
187 |
+
builder.add_edge("tools", "assistant")
|
188 |
+
|
189 |
+
return builder.compile()
|
190 |
+
|
191 |
+
|
192 |
+
if __name__ == "__main__":
|
193 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
194 |
+
graph = build_graph()
|
195 |
+
messages = [HumanMessage(content=question)]
|
196 |
+
messages = graph.invoke({"messages": messages})
|
197 |
+
for m in messages["messages"]:
|
198 |
+
m.pretty_print()
|
backup/app.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import inspect
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
from langchain_core.messages import HumanMessage
|
8 |
+
from agent import build_graph
|
9 |
+
|
10 |
+
# (Keep Constants as is)
|
11 |
+
# --- Constants ---
|
12 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
+
|
14 |
+
# --- Basic Agent Definition ---
|
15 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
16 |
+
class BasicAgent:
|
17 |
+
def __init__(self):
|
18 |
+
print("BasicAgent initialized.")
|
19 |
+
self.graph = build_graph()
|
20 |
+
|
21 |
+
def __call__(self, question: str) -> str:
|
22 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
23 |
+
messages = [HumanMessage(content=question)]
|
24 |
+
result = self.graph.invoke({"messages": messages})
|
25 |
+
answer = result['messages'][-1].content
|
26 |
+
return answer
|
27 |
+
|
28 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
29 |
+
"""
|
30 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
31 |
+
and displays the results.
|
32 |
+
"""
|
33 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
34 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
35 |
+
|
36 |
+
if profile:
|
37 |
+
username= f"{profile.username}"
|
38 |
+
print(f"User logged in: {username}")
|
39 |
+
else:
|
40 |
+
print("User not logged in.")
|
41 |
+
return "Please Login to Hugging Face with the button.", None
|
42 |
+
|
43 |
+
api_url = DEFAULT_API_URL
|
44 |
+
questions_url = f"{api_url}/questions"
|
45 |
+
submit_url = f"{api_url}/submit"
|
46 |
+
|
47 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
48 |
+
try:
|
49 |
+
agent = BasicAgent()
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error instantiating agent: {e}")
|
52 |
+
return f"Error initializing agent: {e}", None
|
53 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
54 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
55 |
+
print(agent_code)
|
56 |
+
|
57 |
+
# 2. Fetch Questions
|
58 |
+
print(f"Fetching questions from: {questions_url}")
|
59 |
+
try:
|
60 |
+
response = requests.get(questions_url, timeout=15)
|
61 |
+
response.raise_for_status()
|
62 |
+
questions_data = response.json()
|
63 |
+
if not questions_data:
|
64 |
+
print("Fetched questions list is empty.")
|
65 |
+
return "Fetched questions list is empty or invalid format.", None
|
66 |
+
print(f"Fetched {len(questions_data)} questions.")
|
67 |
+
except requests.exceptions.RequestException as e:
|
68 |
+
print(f"Error fetching questions: {e}")
|
69 |
+
return f"Error fetching questions: {e}", None
|
70 |
+
except requests.exceptions.JSONDecodeError as e:
|
71 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
72 |
+
print(f"Response text: {response.text[:500]}")
|
73 |
+
return f"Error decoding server response for questions: {e}", None
|
74 |
+
except Exception as e:
|
75 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
76 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
77 |
+
|
78 |
+
# 3. Run your Agent
|
79 |
+
results_log = []
|
80 |
+
answers_payload = []
|
81 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
82 |
+
for item in questions_data:
|
83 |
+
task_id = item.get("task_id")
|
84 |
+
question_text = item.get("question")
|
85 |
+
if not task_id or question_text is None:
|
86 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
87 |
+
continue
|
88 |
+
try:
|
89 |
+
submitted_answer = agent(question_text)
|
90 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
91 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
92 |
+
except Exception as e:
|
93 |
+
print(f"Error running agent on task {task_id}: {e}")
|
94 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
95 |
+
|
96 |
+
if not answers_payload:
|
97 |
+
print("Agent did not produce any answers to submit.")
|
98 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
99 |
+
|
100 |
+
# 4. Prepare Submission
|
101 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
102 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
103 |
+
print(status_update)
|
104 |
+
|
105 |
+
# 5. Submit
|
106 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
107 |
+
try:
|
108 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
109 |
+
response.raise_for_status()
|
110 |
+
result_data = response.json()
|
111 |
+
final_status = (
|
112 |
+
f"Submission Successful!\n"
|
113 |
+
f"User: {result_data.get('username')}\n"
|
114 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
115 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
116 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
117 |
+
)
|
118 |
+
print("Submission successful.")
|
119 |
+
results_df = pd.DataFrame(results_log)
|
120 |
+
return final_status, results_df
|
121 |
+
except requests.exceptions.HTTPError as e:
|
122 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
123 |
+
try:
|
124 |
+
error_json = e.response.json()
|
125 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
126 |
+
except requests.exceptions.JSONDecodeError:
|
127 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
128 |
+
status_message = f"Submission Failed: {error_detail}"
|
129 |
+
print(status_message)
|
130 |
+
results_df = pd.DataFrame(results_log)
|
131 |
+
return status_message, results_df
|
132 |
+
except requests.exceptions.Timeout:
|
133 |
+
status_message = "Submission Failed: The request timed out."
|
134 |
+
print(status_message)
|
135 |
+
results_df = pd.DataFrame(results_log)
|
136 |
+
return status_message, results_df
|
137 |
+
except requests.exceptions.RequestException as e:
|
138 |
+
status_message = f"Submission Failed: Network error - {e}"
|
139 |
+
print(status_message)
|
140 |
+
results_df = pd.DataFrame(results_log)
|
141 |
+
return status_message, results_df
|
142 |
+
except Exception as e:
|
143 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
144 |
+
print(status_message)
|
145 |
+
results_df = pd.DataFrame(results_log)
|
146 |
+
return status_message, results_df
|
147 |
+
|
148 |
+
|
149 |
+
# --- Build Gradio Interface using Blocks ---
|
150 |
+
with gr.Blocks() as demo:
|
151 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
152 |
+
gr.Markdown(
|
153 |
+
"""
|
154 |
+
**Instructions:**
|
155 |
+
|
156 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
157 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
158 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
159 |
+
|
160 |
+
---
|
161 |
+
**Disclaimers:**
|
162 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
163 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
164 |
+
"""
|
165 |
+
)
|
166 |
+
|
167 |
+
gr.LoginButton()
|
168 |
+
|
169 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
170 |
+
|
171 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
172 |
+
# Removed max_rows=10 from DataFrame constructor
|
173 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
174 |
+
|
175 |
+
run_button.click(
|
176 |
+
fn=run_and_submit_all,
|
177 |
+
outputs=[status_output, results_table]
|
178 |
+
)
|
179 |
+
|
180 |
+
if __name__ == "__main__":
|
181 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
182 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
183 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
184 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
185 |
+
|
186 |
+
if space_host_startup:
|
187 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
188 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
189 |
+
else:
|
190 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
191 |
+
|
192 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
193 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
194 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
195 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
196 |
+
else:
|
197 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
198 |
+
|
199 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
200 |
+
|
201 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
202 |
+
demo.launch(debug=True, share=False)
|