# Imports from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import fasttext # Model (Pipeline) class class TranslateFromAny2XModel: def __init__(self, nllb_model_path: str, fasttext_model_path: str, target_language="eng_Latn"): """Initialize the model with paths for NLLB and FastText NLLB LID models.""" self.nllb_model_path = nllb_model_path self.fasttext_model_path = fasttext_model_path self.target_language = target_language # Load NLLB model and tokenizer self.model = AutoModelForSeq2SeqLM.from_pretrained(nllb_model_path) self.tokenizer = AutoTokenizer.from_pretrained(nllb_model_path) # Load FastText language identification model self.fasttext_model = fasttext.load_model(fasttext_model_path) def generate(self, prompt: str) -> str: """Translates the input prompt to target_language using the NLLB model and source language detection using fastText LID model.""" self.tokenizer.src_lang = self.fasttext_model.predict(prompt)[0][0].replace("__label__", "") inputs = self.tokenizer(prompt, return_tensors="pt") output_tokens = self.model.generate(**inputs, forced_bos_token_id=self.tokenizer.convert_tokens_to_ids(self.target_language))[0] output = self.tokenizer.decode(output_tokens, skip_special_tokens=True) return output