Spaces:
Build error
Build error
Upload 2 files
Browse files- main.py +226 -0
- requirement.txt +16 -0
main.py
ADDED
|
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import uuid
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 6 |
+
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
|
| 7 |
+
from langchain_core.prompts import PromptTemplate
|
| 8 |
+
from langchain_community.vectorstores import Chroma
|
| 9 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 10 |
+
from langchain_openai import ChatOpenAI
|
| 11 |
+
from langchain.chains import RetrievalQA
|
| 12 |
+
from langchain_community.document_loaders import UnstructuredURLLoader
|
| 13 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 14 |
+
from langchain_community.vectorstores.utils import filter_complex_metadata
|
| 15 |
+
import smtplib
|
| 16 |
+
from email.mime.text import MIMEText
|
| 17 |
+
from email.mime.multipart import MIMEMultipart
|
| 18 |
+
import logging
|
| 19 |
+
|
| 20 |
+
load_dotenv()
|
| 21 |
+
|
| 22 |
+
os.environ['LANGCHAIN_TRACING_V2'] = 'true'
|
| 23 |
+
os.environ['LANGCHAIN_ENDPOINT'] = 'https://api.smith.langchain.com'
|
| 24 |
+
os.environ['LANGCHAIN_API_KEY']
|
| 25 |
+
os.environ["OPENAI_API_KEY"]
|
| 26 |
+
|
| 27 |
+
embeddings_model = HuggingFaceEmbeddings(model_name="HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5")
|
| 28 |
+
|
| 29 |
+
model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-large-mnli")
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
| 33 |
+
|
| 34 |
+
def detect_intent(text):
|
| 35 |
+
result = classifier(text, candidate_labels=["question", "greeting", "small talk", "feedback", "thanks"])
|
| 36 |
+
label = result["labels"][0]
|
| 37 |
+
return label.lower()
|
| 38 |
+
|
| 39 |
+
chroma_db_path = "./chroma_db"
|
| 40 |
+
chroma_client = chromadb.PersistentClient(path=chroma_db_path)
|
| 41 |
+
|
| 42 |
+
data = chroma_client.get_collection(name="my_dataaaa")
|
| 43 |
+
vectorstore = Chroma(
|
| 44 |
+
collection_name="my_dataaaa",
|
| 45 |
+
persist_directory="./chroma_db",
|
| 46 |
+
embedding_function=embeddings_model
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
#Create a retriever from chroma DATASTORE
|
| 50 |
+
retriever = vectorstore.as_retriever(
|
| 51 |
+
search_type="mmr",
|
| 52 |
+
search_kwargs={'k': 6, 'lambda_mult': 0.25}
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
| 56 |
+
|
| 57 |
+
def rerank_docs(query, docs, top_k=50):
|
| 58 |
+
pairs = [(query, doc.page_content) for doc in docs]
|
| 59 |
+
scores = reranker.predict(pairs)
|
| 60 |
+
scored_docs = list(zip(docs, scores))
|
| 61 |
+
scored_docs = sorted(scored_docs, key=lambda x: x[1], reverse=True)
|
| 62 |
+
top_docs = [doc for doc, score in scored_docs[:top_k]]
|
| 63 |
+
return top_docs
|
| 64 |
+
custom_prompt = PromptTemplate.from_template("""
|
| 65 |
+
You are a helpful assistant answering student questions based ONLY on the provided context.
|
| 66 |
+
You must read the entire context carefully and include all relevant information in your answer.
|
| 67 |
+
If multiple documents or requirements are mentioned, list them all clearly and completely.
|
| 68 |
+
If the answer is not found in the context, respond with: "je ne trouve pas la réponse."
|
| 69 |
+
Do not use your own knowledge for university-related questions. Only use what is in the context.
|
| 70 |
+
Structure the answer clearly and completely. Do not make any assumptions if the context does not have the answer.
|
| 71 |
+
|
| 72 |
+
Context:
|
| 73 |
+
{context}
|
| 74 |
+
|
| 75 |
+
Question:
|
| 76 |
+
{question}
|
| 77 |
+
|
| 78 |
+
Answer:
|
| 79 |
+
""")
|
| 80 |
+
|
| 81 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo")
|
| 82 |
+
|
| 83 |
+
def format_docs(docs):
|
| 84 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
| 85 |
+
|
| 86 |
+
context = format_docs(docs)
|
| 87 |
+
context
|
| 88 |
+
|
| 89 |
+
rag_chain = (
|
| 90 |
+
{
|
| 91 |
+
"context": retriever
|
| 92 |
+
| (lambda docs: rerank_docs(docs=docs, query="{question}"))
|
| 93 |
+
| format_docs,
|
| 94 |
+
"question": RunnablePassthrough()
|
| 95 |
+
}
|
| 96 |
+
| custom_prompt
|
| 97 |
+
| llm
|
| 98 |
+
| StrOutputParser()
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
PENDING_QUESTIONS_FILE = "pending_questions.json"
|
| 103 |
+
|
| 104 |
+
def store_pending_question(user_email, question):
|
| 105 |
+
q_id = str(uuid.uuid4())
|
| 106 |
+
pending = {
|
| 107 |
+
"id": q_id,
|
| 108 |
+
"timestamp": datetime.utcnow().isoformat(),
|
| 109 |
+
"user_email": user_email,
|
| 110 |
+
"question": question
|
| 111 |
+
}
|
| 112 |
+
if os.path.exists(PENDING_QUESTIONS_FILE):
|
| 113 |
+
with open(PENDING_QUESTIONS_FILE, "r") as f:
|
| 114 |
+
data = json.load(f)
|
| 115 |
+
else:
|
| 116 |
+
data = []
|
| 117 |
+
|
| 118 |
+
data.append(pending)
|
| 119 |
+
with open(PENDING_QUESTIONS_FILE, "w") as f:
|
| 120 |
+
json.dump(data, f, indent=4)
|
| 121 |
+
return q_id
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def send_question_to_admin(user_email, user_question,question_id):
|
| 126 |
+
admin_email = "[email protected]"
|
| 127 |
+
smtp_server = "smtp.gmail.com"
|
| 128 |
+
smtp_port = 587
|
| 129 |
+
sender_email = "[email protected]"
|
| 130 |
+
sender_password = os.getenv("BOT_EMAIL_PASSWORD")
|
| 131 |
+
|
| 132 |
+
subject = f"Nouvelle question [{question_id}] "
|
| 133 |
+
body = (
|
| 134 |
+
f"Question ID: {question_id}\n"
|
| 135 |
+
f"Question posée :\n\n{user_question}"
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
message = MIMEMultipart()
|
| 139 |
+
message["From"] = sender_email
|
| 140 |
+
message["To"] = admin_email
|
| 141 |
+
message["Reply-To"] = "[email protected]"
|
| 142 |
+
message["Subject"] = subject
|
| 143 |
+
|
| 144 |
+
message.attach(MIMEText(body, "plain"))
|
| 145 |
+
|
| 146 |
+
try:
|
| 147 |
+
with smtplib.SMTP(smtp_server, smtp_port) as server:
|
| 148 |
+
server.starttls()
|
| 149 |
+
server.login(sender_email, sender_password)
|
| 150 |
+
server.sendmail(sender_email, admin_email, message.as_string())
|
| 151 |
+
return True
|
| 152 |
+
except Exception as e:
|
| 153 |
+
print("Error sending email:", e)
|
| 154 |
+
return False
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def university_related(question):
|
| 158 |
+
labels = ["university", "general knowledge"]
|
| 159 |
+
result = classifier(question, candidate_labels=labels)
|
| 160 |
+
top_label = result["labels"][0]
|
| 161 |
+
return top_label.lower() == "university"
|
| 162 |
+
|
| 163 |
+
def uncertain(answer):
|
| 164 |
+
uncertain_phrases = [
|
| 165 |
+
"je ne trouve pas la réponse",
|
| 166 |
+
"désolé, je ne peux pas vous aider"
|
| 167 |
+
]
|
| 168 |
+
return any(phrase in answer.lower() for phrase in uncertain_phrases) or answer.strip() == ""
|
| 169 |
+
|
| 170 |
+
def handle_user_query(question, user_email=None):
|
| 171 |
+
# using the classifier model
|
| 172 |
+
intent = detect_intent(question.lower())
|
| 173 |
+
|
| 174 |
+
if intent in ["greeting", "small talk"]:
|
| 175 |
+
return "Salut 👋 ! Posez-moi une question précise sur les procédures universitaires 😊."
|
| 176 |
+
if not university_related(question):
|
| 177 |
+
return "Merci de poser une question sur les procédures universitaires 😊"
|
| 178 |
+
# integration de RAG Pipeline
|
| 179 |
+
answer = rag_chain.invoke(question)
|
| 180 |
+
|
| 181 |
+
# making the llama know what to do if there are no relevant docs
|
| 182 |
+
if uncertain(answer):
|
| 183 |
+
if not user_email:
|
| 184 |
+
return (
|
| 185 |
+
"Je ne trouve pas la réponse à cette question. "
|
| 186 |
+
"Veuillez me fournir votre adresse e-mail et la question en français pour que je puisse la transmettre à un administrateur.")
|
| 187 |
+
|
| 188 |
+
q_id = store_pending_question(user_email, question)
|
| 189 |
+
sent = send_question_to_admin(user_email, question, q_id)
|
| 190 |
+
|
| 191 |
+
if sent:
|
| 192 |
+
return "Votre question a été transmise à l'administration. Vous recevrez une réponse par e-mail dès que possible."
|
| 193 |
+
else:
|
| 194 |
+
return "Une erreur est survenue lors de l'envoi de votre question. Veuillez réessayer plus tard."
|
| 195 |
+
else:
|
| 196 |
+
return answer
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
user_email = ""
|
| 200 |
+
|
| 201 |
+
def chatbot_fn(message, history):
|
| 202 |
+
global user_email
|
| 203 |
+
if not user_email:
|
| 204 |
+
if "@gmail.com" in message or "@fsm.rnu.tn" in message:
|
| 205 |
+
user_email = message
|
| 206 |
+
return "Merci ! Maintenant, posez-moi votre question 😊"
|
| 207 |
+
else:
|
| 208 |
+
return "Bienvenue 👋 Veuillez entrer votre adresse e-mail pour commencer."
|
| 209 |
+
|
| 210 |
+
return handle_user_query(message, user_email)
|
| 211 |
+
|
| 212 |
+
with gr.Blocks() as chat:
|
| 213 |
+
gr.ChatInterface(
|
| 214 |
+
fn=chatbot_fn,
|
| 215 |
+
title="Chatbot Universitaire 🤖 🧠",
|
| 216 |
+
description="Commencez par entrer votre adresse e-mail. Ensuite, posez toutes vos questions sur les procédures universitaires !",
|
| 217 |
+
examples=[
|
| 218 |
+
["Comment faire une demande de réinscription ?"],
|
| 219 |
+
["Quels sont les délais pour la soutenance ?"]
|
| 220 |
+
],
|
| 221 |
+
submit_btn="Envoyer"
|
| 222 |
+
)
|
| 223 |
+
gr.Markdown("© 2025 Esra Belhassen. All rights reserved")
|
| 224 |
+
|
| 225 |
+
chat.launch(share=True)
|
| 226 |
+
|
requirement.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain
|
| 2 |
+
langchain-openai
|
| 3 |
+
langchain-huggingface
|
| 4 |
+
langchain-community
|
| 5 |
+
langchain-core
|
| 6 |
+
sentence-transformers
|
| 7 |
+
transformers
|
| 8 |
+
chromadb
|
| 9 |
+
bs4
|
| 10 |
+
matplotlib
|
| 11 |
+
seaborn
|
| 12 |
+
scikit-learn
|
| 13 |
+
python-dotenv
|
| 14 |
+
gradio
|
| 15 |
+
ollama
|
| 16 |
+
uuid
|