Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,4033 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from typing import List
|
|
|
|
|
|
|
2 |
from langchain import hub
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
from langchain_community.vectorstores import Chroma
|
5 |
from langchain.vectorstores import Chroma
|
6 |
-
import chromadb
|
7 |
from langchain_core.output_parsers import StrOutputParser
|
8 |
from langchain_core.runnables import RunnablePassthrough
|
|
|
9 |
import bs4
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
12 |
from langchain_huggingface import HuggingFaceEmbeddings
|
13 |
import ollama
|
14 |
from langchain.embeddings import OllamaEmbeddings, HuggingFaceEmbeddings
|
|
|
15 |
import numpy as np
|
|
|
|
|
|
|
16 |
import uuid
|
17 |
import os
|
18 |
-
from
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
load_dotenv()
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
embeddings_model = HuggingFaceEmbeddings(model_name="HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5")
|
50 |
|
51 |
model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-large-mnli")
|
@@ -57,18 +4039,14 @@ def detect_intent(text):
|
|
57 |
result = classifier(text, candidate_labels=["question", "greeting", "small talk", "feedback", "thanks"])
|
58 |
label = result["labels"][0]
|
59 |
return label.lower()
|
60 |
-
|
61 |
-
|
62 |
-
with zipfile.ZipFile("chroma_db_Copy.zip", "r") as zip_ref:
|
63 |
-
zip_ref.extractall("./")
|
64 |
-
|
65 |
-
chroma_db_path = "./chroma_db_Copy"
|
66 |
chroma_client = chromadb.PersistentClient(path=chroma_db_path)
|
67 |
|
68 |
data = chroma_client.get_collection(name="my_dataaaa")
|
69 |
vectorstore = Chroma(
|
70 |
collection_name="my_dataaaa",
|
71 |
-
persist_directory="./
|
72 |
embedding_function=embeddings_model
|
73 |
)
|
74 |
|
@@ -109,7 +4087,8 @@ llm = ChatOpenAI(model="gpt-3.5-turbo")
|
|
109 |
def format_docs(docs):
|
110 |
return "\n\n".join(doc.page_content for doc in docs)
|
111 |
|
112 |
-
|
|
|
113 |
|
114 |
rag_chain = (
|
115 |
{
|
@@ -247,5 +4226,5 @@ with gr.Blocks() as chat:
|
|
247 |
)
|
248 |
gr.Markdown("© 2025 Esra Belhassen. All rights reserved")
|
249 |
|
250 |
-
chat.launch()
|
251 |
|
|
|
1 |
+
import os
|
2 |
+
import uuid
|
3 |
+
import gradio as gr
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from langchain_core.output_parsers import StrOutputParser
|
6 |
+
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
|
7 |
+
from langchain_core.prompts import PromptTemplate
|
8 |
+
from langchain_community.vectorstores import Chroma
|
9 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
10 |
+
from langchain_openai import ChatOpenAI
|
11 |
+
from langchain.chains import RetrievalQA
|
12 |
+
from langchain_community.document_loaders import UnstructuredURLLoader
|
13 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
+
from langchain_community.vectorstores.utils import filter_complex_metadata
|
15 |
+
import smtplib
|
16 |
+
from email.mime.text import MIMEText
|
17 |
+
from email.mime.multipart import MIMEMultipart
|
18 |
+
import logging
|
19 |
+
from langchain_community.document_loaders import PyPDFLoader
|
20 |
from typing import List
|
21 |
+
from langchain_core.documents import Document
|
22 |
+
from langchain_community.document_loaders import PyPDFLoader, WebBaseLoader
|
23 |
+
from langchain_unstructured import UnstructuredLoader
|
24 |
from langchain import hub
|
25 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
26 |
from langchain_community.vectorstores import Chroma
|
27 |
from langchain.vectorstores import Chroma
|
|
|
28 |
from langchain_core.output_parsers import StrOutputParser
|
29 |
from langchain_core.runnables import RunnablePassthrough
|
30 |
+
import os
|
31 |
import bs4
|
32 |
from sentence_transformers import SentenceTransformer
|
33 |
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
34 |
from langchain_huggingface import HuggingFaceEmbeddings
|
35 |
import ollama
|
36 |
from langchain.embeddings import OllamaEmbeddings, HuggingFaceEmbeddings
|
37 |
+
from langchain_ollama import OllamaEmbeddings
|
38 |
import numpy as np
|
39 |
+
from sklearn.decomposition import PCA
|
40 |
+
import matplotlib.pyplot as plt
|
41 |
+
import chromadb
|
42 |
import uuid
|
43 |
import os
|
44 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
45 |
+
load_dotenv()
|
46 |
+
|
47 |
+
os.environ['LANGCHAIN_TRACING_V2'] = 'true'
|
48 |
+
os.environ['LANGCHAIN_ENDPOINT'] = 'https://api.smith.langchain.com'
|
49 |
+
os.environ['LANGCHAIN_API_KEY']
|
50 |
+
os.environ["OPENAI_API_KEY"]
|
51 |
+
|
52 |
+
ef clean_text(text):
|
53 |
+
'''this functionn clean the output of the webmloader '''
|
54 |
+
text = text.replace('\xa0', ' ')
|
55 |
+
text = re.sub(r'[\n\r\t]+', ' ', text)
|
56 |
+
text = re.sub(r'\s+', ' ', text)
|
57 |
+
|
58 |
+
return text.strip()
|
59 |
+
|
60 |
+
chroma_db_path = "./chroma_db"
|
61 |
+
chroma_client = chromadb.PersistentClient(path=chroma_db_path)
|
62 |
+
|
63 |
+
data = chroma_client.get_collection(name="my_dataaaa")
|
64 |
+
|
65 |
+
file_path = (
|
66 |
+
"Charte.pdf"
|
67 |
+
)
|
68 |
+
loader = PyPDFLoader(file_path)
|
69 |
+
pages = []
|
70 |
+
async for page in loader.alazy_load():
|
71 |
+
pages.append(page)
|
72 |
+
|
73 |
+
|
74 |
+
document0=pages[0].page_content
|
75 |
+
|
76 |
+
|
77 |
+
document0
|
78 |
+
|
79 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
80 |
+
splits1 = text_splitter.split_text(document0)
|
81 |
+
|
82 |
+
|
83 |
+
splits1
|
84 |
+
|
85 |
+
embeddings1 = embeddings_model.embed_documents(
|
86 |
+
splits1
|
87 |
+
# normalize_embeddings=True,
|
88 |
+
# batch_size=256,
|
89 |
+
# show_progress_bar=True
|
90 |
+
)
|
91 |
+
|
92 |
+
|
93 |
+
ids1 = [str(uuid.uuid4()) for _ in range(len(splits1))]
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
data.add(
|
99 |
+
documents=splits1,
|
100 |
+
embeddings=embeddings1,
|
101 |
+
ids=ids1
|
102 |
+
)
|
103 |
+
|
104 |
+
|
105 |
+
file_path = "circulaire 35-2010.pdf"
|
106 |
+
loader = PyPDFLoader(file_path)
|
107 |
+
pages = []
|
108 |
+
async for page in loader.alazy_load():
|
109 |
+
pages.append(page)
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
document1=[page.page_content for doc in pages]
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
document1
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
document1 = "\n".join(document1)
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
127 |
+
splits2 = text_splitter.split_text(document1)
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
splits2
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
embeddings2 = embeddings_model.embed_documents(
|
137 |
+
splits2,
|
138 |
+
# normalize_embeddings=True,
|
139 |
+
# batch_size=256,
|
140 |
+
# show_progress_bar=True
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
ids2 = [str(uuid.uuid4()) for _ in range(len(splits2))]
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
data.add(
|
153 |
+
documents=splits2,
|
154 |
+
embeddings=embeddings2,
|
155 |
+
ids=ids2
|
156 |
+
)
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
file_path = "Demande de prolongation de stage MP2 Physique.pdf"
|
161 |
+
loader = PyPDFLoader(file_path)
|
162 |
+
pages = []
|
163 |
+
async for page in loader.alazy_load():
|
164 |
+
pages.append(page)
|
165 |
+
|
166 |
+
|
167 |
+
document2 = [page.page_content for doc in pages]
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
document2
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
document2 = "\n".join(document2)
|
177 |
+
|
178 |
+
|
179 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
180 |
+
splits3 = text_splitter.split_text(document2)
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
splits3
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
embeddings3 = embeddings_model.embed_documents(
|
193 |
+
splits3,
|
194 |
+
# normalize_embeddings=True,
|
195 |
+
# batch_size=256,
|
196 |
+
# show_progress_bar=True
|
197 |
+
)
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
ids3 = [str(uuid.uuid4()) for _ in range(len(splits3))]
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
|
209 |
+
data.add(
|
210 |
+
documents=splits3,
|
211 |
+
embeddings=embeddings3,
|
212 |
+
ids=ids3
|
213 |
+
)
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
file_path = "dérogation pdf.pdf"
|
219 |
+
loader = PyPDFLoader(file_path)
|
220 |
+
pages = []
|
221 |
+
async for page in loader.alazy_load():
|
222 |
+
pages.append(page)
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
+
document3=[page.page_content for doc in pages]
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
document3
|
233 |
+
|
234 |
+
|
235 |
+
document3 = "\n".join(document3)
|
236 |
+
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
241 |
+
splits4 = text_splitter.split_text(document3)
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
splits4
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
embeddings4 = embeddings_model.embed_documents(
|
251 |
+
splits4,
|
252 |
+
# normalize_embeddings=True,
|
253 |
+
# batch_size=256,
|
254 |
+
# show_progress_bar=True
|
255 |
+
)
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
ids4 = [str(uuid.uuid4()) for _ in range(len(splits4))]
|
262 |
+
|
263 |
+
|
264 |
+
|
265 |
+
|
266 |
+
data.add(
|
267 |
+
documents=splits4,
|
268 |
+
embeddings=embeddings4,
|
269 |
+
ids=ids4
|
270 |
+
)
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
file_path = "Fiche d'évaluation de stage.pdf"
|
275 |
+
loader = PyPDFLoader(file_path)
|
276 |
+
pages = []
|
277 |
+
async for page in loader.alazy_load():
|
278 |
+
pages.append(page)
|
279 |
+
|
280 |
+
document4=[page.page_content for doc in pages]
|
281 |
+
|
282 |
+
|
283 |
+
|
284 |
+
document4
|
285 |
+
|
286 |
+
|
287 |
+
|
288 |
+
|
289 |
+
document4 = "\n".join(document4)
|
290 |
+
|
291 |
+
|
292 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
293 |
+
splits5 = text_splitter.split_text(document4)
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
splits5
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
|
304 |
+
|
305 |
+
embeddings5 = embeddings_model.embed_documents(
|
306 |
+
splits5,
|
307 |
+
# normalize_embeddings=True,
|
308 |
+
# batch_size=256,
|
309 |
+
# show_progress_bar=True
|
310 |
+
)
|
311 |
+
|
312 |
+
|
313 |
+
ids5 = [str(uuid.uuid4()) for _ in range(len(splits5))]
|
314 |
+
|
315 |
+
|
316 |
+
data.add(
|
317 |
+
documents=splits5,
|
318 |
+
embeddings=embeddings5,
|
319 |
+
ids=ids5
|
320 |
+
)
|
321 |
+
|
322 |
+
|
323 |
+
|
324 |
+
file_path = "النظام الداخلي لكلية العلوم بالمنستير.pdf"
|
325 |
+
loader = PyPDFLoader(file_path)
|
326 |
+
pages = []
|
327 |
+
async for page in loader.alazy_load():
|
328 |
+
pages.append(page)
|
329 |
+
|
330 |
+
|
331 |
+
|
332 |
+
|
333 |
+
|
334 |
+
document5=[page.page_content for doc in pages]
|
335 |
+
|
336 |
+
|
337 |
+
|
338 |
+
|
339 |
+
document5
|
340 |
+
|
341 |
+
|
342 |
+
|
343 |
+
|
344 |
+
document5 = "\n".join(document5)
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
349 |
+
splits6 = text_splitter.split_text(document5)
|
350 |
+
|
351 |
+
|
352 |
+
|
353 |
+
splits6
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
embeddings6 = embeddings_model.embed_documents(
|
359 |
+
splits6,
|
360 |
+
# normalize_embeddings=True,
|
361 |
+
# batch_size=256,
|
362 |
+
# show_progress_bar=True
|
363 |
+
)
|
364 |
+
|
365 |
+
|
366 |
+
|
367 |
+
|
368 |
+
ids6 = [str(uuid.uuid4()) for _ in range(len(splits6))]
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
data.add(
|
373 |
+
documents=splits6,
|
374 |
+
embeddings=embeddings6,
|
375 |
+
ids=ids6
|
376 |
+
)
|
377 |
+
|
378 |
+
|
379 |
+
file_path = "sante_mentale.pdf"
|
380 |
+
loader = PyPDFLoader(file_path)
|
381 |
+
pages = []
|
382 |
+
async for page in loader.alazy_load():
|
383 |
+
pages.append(page)
|
384 |
+
|
385 |
+
|
386 |
+
|
387 |
+
document6=[page.page_content for doc in pages]
|
388 |
+
|
389 |
+
|
390 |
+
document6
|
391 |
+
|
392 |
+
|
393 |
+
|
394 |
+
document6 = "\n".join(document6)
|
395 |
+
|
396 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
397 |
+
splits7 = text_splitter.split_text(document6)
|
398 |
+
|
399 |
+
|
400 |
+
splits7
|
401 |
+
|
402 |
+
embeddings7 = embeddings_model.embed_documents(
|
403 |
+
splits7,
|
404 |
+
# normalize_embeddings=True,
|
405 |
+
# batch_size=256,
|
406 |
+
# show_progress_bar=True
|
407 |
+
)
|
408 |
+
|
409 |
+
|
410 |
+
|
411 |
+
ids7 = [str(uuid.uuid4()) for _ in range(len(splits7))]
|
412 |
+
|
413 |
+
|
414 |
+
data.add(
|
415 |
+
documents=splits7,
|
416 |
+
embeddings=embeddings7,
|
417 |
+
ids=ids7
|
418 |
+
)
|
419 |
+
|
420 |
+
|
421 |
+
|
422 |
+
file_path = "sante_mentale2.pdf"
|
423 |
+
loader = PyPDFLoader(file_path)
|
424 |
+
pages = []
|
425 |
+
async for page in loader.alazy_load():
|
426 |
+
pages.append(page)
|
427 |
+
|
428 |
+
|
429 |
+
|
430 |
+
|
431 |
+
|
432 |
+
document7=[page.page_content for doc in pages]
|
433 |
+
|
434 |
+
|
435 |
+
|
436 |
+
|
437 |
+
|
438 |
+
document7
|
439 |
+
|
440 |
+
|
441 |
+
|
442 |
+
|
443 |
+
document7 = "\n".join(document7)
|
444 |
+
|
445 |
+
|
446 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
447 |
+
splits8 = text_splitter.split_text(document7)
|
448 |
+
|
449 |
+
|
450 |
+
|
451 |
+
splits8
|
452 |
+
|
453 |
+
|
454 |
+
embeddings8 = embeddings_model.embed_documents(
|
455 |
+
splits8,
|
456 |
+
# normalize_embeddings=True,
|
457 |
+
# batch_size=256,
|
458 |
+
# show_progress_bar=True
|
459 |
+
)
|
460 |
+
|
461 |
+
|
462 |
+
ids8 = [str(uuid.uuid4()) for _ in range(len(splits8))]
|
463 |
+
|
464 |
+
|
465 |
+
|
466 |
+
|
467 |
+
data.add(
|
468 |
+
documents=splits8,
|
469 |
+
embeddings=embeddings8,
|
470 |
+
ids=ids8
|
471 |
+
)
|
472 |
+
|
473 |
+
|
474 |
+
|
475 |
+
file_path = "score_pour_mastere.pdf"
|
476 |
+
loader = PyPDFLoader(file_path)
|
477 |
+
pages = []
|
478 |
+
async for page in loader.alazy_load():
|
479 |
+
pages.append(page)
|
480 |
+
|
481 |
+
|
482 |
+
# In[99]:
|
483 |
+
|
484 |
+
|
485 |
+
document8=[page.page_content for doc in pages]
|
486 |
+
|
487 |
+
|
488 |
+
# In[100]:
|
489 |
+
|
490 |
+
|
491 |
+
document8
|
492 |
+
|
493 |
+
|
494 |
+
# # splitting DOC8 into chunks
|
495 |
+
|
496 |
+
# In[102]:
|
497 |
+
|
498 |
+
|
499 |
+
document8 = "\n".join(document8)
|
500 |
+
|
501 |
+
|
502 |
+
# In[103]:
|
503 |
+
|
504 |
+
|
505 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
506 |
+
splits9 = text_splitter.split_text(document8)
|
507 |
+
|
508 |
+
|
509 |
+
# In[104]:
|
510 |
+
|
511 |
+
|
512 |
+
splits9
|
513 |
+
|
514 |
+
|
515 |
+
# In[105]:
|
516 |
+
|
517 |
+
|
518 |
+
embeddings9 = embeddings_model.embed_documents(
|
519 |
+
splits9,
|
520 |
+
# normalize_embeddings=True,
|
521 |
+
# batch_size=256,
|
522 |
+
# show_progress_bar=True
|
523 |
+
)
|
524 |
+
|
525 |
+
|
526 |
+
# In[106]:
|
527 |
+
|
528 |
+
|
529 |
+
ids9 = [str(uuid.uuid4()) for _ in range(len(splits9))]
|
530 |
+
|
531 |
+
|
532 |
+
# In[107]:
|
533 |
+
|
534 |
+
|
535 |
+
data.add(
|
536 |
+
documents=splits9,
|
537 |
+
embeddings=embeddings9,
|
538 |
+
ids=ids9
|
539 |
+
)
|
540 |
+
|
541 |
+
|
542 |
+
# # Master RECHERCHE
|
543 |
+
|
544 |
+
# # Document 9 Recherche chimie
|
545 |
+
|
546 |
+
# In[110]:
|
547 |
+
|
548 |
+
|
549 |
+
file_path = "recherche_chimie.pdf"
|
550 |
+
loader = PyPDFLoader(file_path)
|
551 |
+
pages = []
|
552 |
+
async for page in loader.alazy_load():
|
553 |
+
pages.append(page)
|
554 |
+
|
555 |
+
|
556 |
+
# In[111]:
|
557 |
+
|
558 |
+
|
559 |
+
document9=[page.page_content for doc in pages]
|
560 |
+
|
561 |
+
|
562 |
+
# In[112]:
|
563 |
+
|
564 |
+
|
565 |
+
document9
|
566 |
+
|
567 |
+
|
568 |
+
# # splitting DOC9 into chunks
|
569 |
+
|
570 |
+
# In[114]:
|
571 |
+
|
572 |
+
|
573 |
+
document9= "\n".join(document9)
|
574 |
+
|
575 |
+
|
576 |
+
# In[115]:
|
577 |
+
|
578 |
+
|
579 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
580 |
+
splits10 = text_splitter.split_text(document9)
|
581 |
+
|
582 |
+
|
583 |
+
# In[116]:
|
584 |
+
|
585 |
+
|
586 |
+
splits10
|
587 |
+
|
588 |
+
|
589 |
+
# In[117]:
|
590 |
+
|
591 |
+
|
592 |
+
embeddings10 = embeddings_model.embed_documents(
|
593 |
+
splits10,
|
594 |
+
# normalize_embeddings=True,
|
595 |
+
# batch_size=256,
|
596 |
+
# show_progress_bar=True
|
597 |
+
)
|
598 |
+
|
599 |
+
|
600 |
+
# In[118]:
|
601 |
+
|
602 |
+
|
603 |
+
ids10 = [str(uuid.uuid4()) for _ in range(len(splits10))]
|
604 |
+
|
605 |
+
|
606 |
+
# In[119]:
|
607 |
+
|
608 |
+
|
609 |
+
data.add(
|
610 |
+
documents=splits10,
|
611 |
+
embeddings=embeddings10,
|
612 |
+
ids=ids10
|
613 |
+
)
|
614 |
+
|
615 |
+
|
616 |
+
# # Document 10 Recherche info
|
617 |
+
|
618 |
+
# In[121]:
|
619 |
+
|
620 |
+
|
621 |
+
file_path = "recherche_info.pdf"
|
622 |
+
loader = PyPDFLoader(file_path)
|
623 |
+
pages = []
|
624 |
+
async for page in loader.alazy_load():
|
625 |
+
pages.append(page)
|
626 |
+
|
627 |
+
|
628 |
+
# In[122]:
|
629 |
+
|
630 |
+
|
631 |
+
document10=[page.page_content for doc in pages]
|
632 |
+
|
633 |
+
|
634 |
+
# In[123]:
|
635 |
+
|
636 |
+
|
637 |
+
document10
|
638 |
+
|
639 |
+
|
640 |
+
# # splitting DOC10 into chunks
|
641 |
+
|
642 |
+
# In[125]:
|
643 |
+
|
644 |
+
|
645 |
+
document10= "\n".join(document10)
|
646 |
+
|
647 |
+
|
648 |
+
# In[126]:
|
649 |
+
|
650 |
+
|
651 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
652 |
+
splits11 = text_splitter.split_text(document10)
|
653 |
+
|
654 |
+
|
655 |
+
# In[127]:
|
656 |
+
|
657 |
+
|
658 |
+
splits11
|
659 |
+
|
660 |
+
|
661 |
+
# In[128]:
|
662 |
+
|
663 |
+
|
664 |
+
embeddings11 = embeddings_model.embed_documents(
|
665 |
+
splits11,
|
666 |
+
# normalize_embeddings=True,
|
667 |
+
# batch_size=256,
|
668 |
+
# show_progress_bar=True
|
669 |
+
)
|
670 |
+
|
671 |
+
|
672 |
+
# In[129]:
|
673 |
+
|
674 |
+
|
675 |
+
ids11 = [str(uuid.uuid4()) for _ in range(len(splits11))]
|
676 |
+
|
677 |
+
|
678 |
+
# In[130]:
|
679 |
+
|
680 |
+
|
681 |
+
data.add(
|
682 |
+
documents=splits11,
|
683 |
+
embeddings=embeddings11,
|
684 |
+
ids=ids11
|
685 |
+
)
|
686 |
+
|
687 |
+
|
688 |
+
# # Document 11 Recherche physique
|
689 |
+
|
690 |
+
# In[132]:
|
691 |
+
|
692 |
+
|
693 |
+
file_path = "recherche_phy.pdf"
|
694 |
+
loader = PyPDFLoader(file_path)
|
695 |
+
pages = []
|
696 |
+
async for page in loader.alazy_load():
|
697 |
+
pages.append(page)
|
698 |
+
|
699 |
+
|
700 |
+
# In[133]:
|
701 |
+
|
702 |
+
|
703 |
+
document11=[page.page_content for doc in pages]
|
704 |
+
|
705 |
+
|
706 |
+
# In[134]:
|
707 |
+
|
708 |
+
|
709 |
+
document11
|
710 |
+
|
711 |
+
|
712 |
+
# # splitting DOC11 into chunks
|
713 |
+
|
714 |
+
# In[136]:
|
715 |
+
|
716 |
+
|
717 |
+
document11= "\n".join(document11)
|
718 |
+
|
719 |
+
|
720 |
+
# In[137]:
|
721 |
+
|
722 |
+
|
723 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
724 |
+
splits12 = text_splitter.split_text(document11)
|
725 |
+
|
726 |
+
|
727 |
+
# In[138]:
|
728 |
+
|
729 |
+
|
730 |
+
splits12
|
731 |
+
|
732 |
+
|
733 |
+
# In[139]:
|
734 |
+
|
735 |
+
|
736 |
+
embeddings12 = embeddings_model.embed_documents(
|
737 |
+
splits12,
|
738 |
+
# normalize_embeddings=True,
|
739 |
+
# batch_size=256,
|
740 |
+
# show_progress_bar=True
|
741 |
+
)
|
742 |
+
|
743 |
+
|
744 |
+
# In[140]:
|
745 |
+
|
746 |
+
|
747 |
+
ids12 = [str(uuid.uuid4()) for _ in range(len(splits12))]
|
748 |
+
|
749 |
+
|
750 |
+
# In[141]:
|
751 |
+
|
752 |
+
|
753 |
+
data.add(
|
754 |
+
documents=splits12,
|
755 |
+
embeddings=embeddings12,
|
756 |
+
ids=ids12
|
757 |
+
)
|
758 |
+
|
759 |
+
|
760 |
+
# # Mastere Pro
|
761 |
+
|
762 |
+
# # Document 12 PRO chimie
|
763 |
+
|
764 |
+
# In[144]:
|
765 |
+
|
766 |
+
|
767 |
+
file_path = "pro_chimie.pdf"
|
768 |
+
loader = PyPDFLoader(file_path)
|
769 |
+
pages = []
|
770 |
+
async for page in loader.alazy_load():
|
771 |
+
pages.append(page)
|
772 |
+
|
773 |
+
|
774 |
+
# In[145]:
|
775 |
+
|
776 |
+
|
777 |
+
document12=[page.page_content for doc in pages]
|
778 |
+
|
779 |
+
|
780 |
+
# In[146]:
|
781 |
+
|
782 |
+
|
783 |
+
document12
|
784 |
+
|
785 |
+
|
786 |
+
# # splitting DOC 12 into chunks
|
787 |
+
|
788 |
+
# In[148]:
|
789 |
+
|
790 |
+
|
791 |
+
document12= "\n".join(document12)
|
792 |
+
|
793 |
+
|
794 |
+
# In[149]:
|
795 |
+
|
796 |
+
|
797 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
798 |
+
splits13= text_splitter.split_text(document12)
|
799 |
+
|
800 |
+
|
801 |
+
# In[150]:
|
802 |
+
|
803 |
+
|
804 |
+
splits13
|
805 |
+
|
806 |
+
|
807 |
+
# In[151]:
|
808 |
+
|
809 |
+
|
810 |
+
embeddings13 = embeddings_model.embed_documents(
|
811 |
+
splits13,
|
812 |
+
# normalize_embeddings=True,
|
813 |
+
# batch_size=256,
|
814 |
+
# show_progress_bar=True
|
815 |
+
)
|
816 |
+
|
817 |
+
|
818 |
+
# In[152]:
|
819 |
+
|
820 |
+
|
821 |
+
ids13 = [str(uuid.uuid4()) for _ in range(len(splits13))]
|
822 |
+
|
823 |
+
|
824 |
+
# In[153]:
|
825 |
+
|
826 |
+
|
827 |
+
data.add(
|
828 |
+
documents=splits13,
|
829 |
+
embeddings=embeddings13,
|
830 |
+
ids=ids13
|
831 |
+
)
|
832 |
+
|
833 |
+
|
834 |
+
# # Document 13 PRO info
|
835 |
+
|
836 |
+
# In[155]:
|
837 |
+
|
838 |
+
|
839 |
+
file_path = "pro_info.pdf"
|
840 |
+
loader = PyPDFLoader(file_path)
|
841 |
+
pages = []
|
842 |
+
async for page in loader.alazy_load():
|
843 |
+
pages.append(page)
|
844 |
+
|
845 |
+
|
846 |
+
# In[156]:
|
847 |
+
|
848 |
+
|
849 |
+
document13=[page.page_content for doc in pages]
|
850 |
+
|
851 |
+
|
852 |
+
# In[157]:
|
853 |
+
|
854 |
+
|
855 |
+
document13
|
856 |
+
|
857 |
+
|
858 |
+
# # splitting DOC 13 into chunks
|
859 |
+
|
860 |
+
# In[159]:
|
861 |
+
|
862 |
+
|
863 |
+
document13= "\n".join(document13)
|
864 |
+
|
865 |
+
|
866 |
+
# In[160]:
|
867 |
+
|
868 |
+
|
869 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
870 |
+
splits14= text_splitter.split_text(document13)
|
871 |
+
|
872 |
+
|
873 |
+
# In[161]:
|
874 |
+
|
875 |
+
|
876 |
+
splits14
|
877 |
+
|
878 |
+
|
879 |
+
# In[162]:
|
880 |
+
|
881 |
+
|
882 |
+
embeddings14 = embeddings_model.embed_documents(
|
883 |
+
splits14,
|
884 |
+
# normalize_embeddings=True,
|
885 |
+
# batch_size=256,
|
886 |
+
# show_progress_bar=True
|
887 |
+
)
|
888 |
+
|
889 |
+
|
890 |
+
# In[163]:
|
891 |
+
|
892 |
+
|
893 |
+
ids14 = [str(uuid.uuid4()) for _ in range(len(splits14))]
|
894 |
+
|
895 |
+
|
896 |
+
# In[164]:
|
897 |
+
|
898 |
+
|
899 |
+
data.add(
|
900 |
+
documents=splits14,
|
901 |
+
embeddings=embeddings14,
|
902 |
+
ids=ids14
|
903 |
+
)
|
904 |
+
|
905 |
+
|
906 |
+
# # Document 14 on peut effectuer deux stages en meme temps
|
907 |
+
|
908 |
+
# In[166]:
|
909 |
+
|
910 |
+
|
911 |
+
file_path = "deux_stage_.pdf"
|
912 |
+
loader = PyPDFLoader(file_path)
|
913 |
+
pages = []
|
914 |
+
async for page in loader.alazy_load():
|
915 |
+
pages.append(page)
|
916 |
+
|
917 |
+
|
918 |
+
# In[167]:
|
919 |
+
|
920 |
+
|
921 |
+
document14=[page.page_content for doc in pages]
|
922 |
+
|
923 |
+
|
924 |
+
# In[168]:
|
925 |
+
|
926 |
+
|
927 |
+
document14
|
928 |
+
|
929 |
+
|
930 |
+
# # splitting DOC14 INTO chunks
|
931 |
+
|
932 |
+
# In[170]:
|
933 |
+
|
934 |
+
|
935 |
+
document14= "\n".join(document14)
|
936 |
+
|
937 |
+
|
938 |
+
# In[171]:
|
939 |
+
|
940 |
+
|
941 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
942 |
+
splits15= text_splitter.split_text(document14)
|
943 |
+
|
944 |
+
|
945 |
+
# In[172]:
|
946 |
+
|
947 |
+
|
948 |
+
splits15
|
949 |
+
|
950 |
+
|
951 |
+
# In[173]:
|
952 |
+
|
953 |
+
|
954 |
+
embeddings15= embeddings_model.embed_documents(
|
955 |
+
splits15,
|
956 |
+
# normalize_embeddings=True,
|
957 |
+
# batch_size=256,
|
958 |
+
# show_progress_bar=True
|
959 |
+
)
|
960 |
+
|
961 |
+
|
962 |
+
# In[174]:
|
963 |
+
|
964 |
+
|
965 |
+
ids15 = [str(uuid.uuid4()) for _ in range(len(splits15))]
|
966 |
+
|
967 |
+
|
968 |
+
# In[175]:
|
969 |
+
|
970 |
+
|
971 |
+
data.add(
|
972 |
+
documents=splits15,
|
973 |
+
embeddings=embeddings15,
|
974 |
+
ids=ids15
|
975 |
+
)
|
976 |
+
|
977 |
+
|
978 |
+
# # Document 15 des question avec reponse
|
979 |
+
|
980 |
+
# In[177]:
|
981 |
+
|
982 |
+
|
983 |
+
file_path = "Les avantages de la carte étudiante.pdf"
|
984 |
+
loader = PyPDFLoader(file_path)
|
985 |
+
pages = []
|
986 |
+
async for page in loader.alazy_load():
|
987 |
+
pages.append(page)
|
988 |
+
|
989 |
+
|
990 |
+
# In[178]:
|
991 |
+
|
992 |
+
|
993 |
+
document15=[page.page_content for doc in pages]
|
994 |
+
|
995 |
+
|
996 |
+
# In[179]:
|
997 |
+
|
998 |
+
|
999 |
+
document15
|
1000 |
+
|
1001 |
+
|
1002 |
+
# # Splitting DOC15 into chunks
|
1003 |
+
|
1004 |
+
# In[181]:
|
1005 |
+
|
1006 |
+
|
1007 |
+
document15= "\n".join(document15)
|
1008 |
+
|
1009 |
+
|
1010 |
+
# In[182]:
|
1011 |
+
|
1012 |
+
|
1013 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50, separators=["\n\n", "\n", ".", " ", "\n•"])
|
1014 |
+
splits16= text_splitter.split_text(document15)
|
1015 |
+
|
1016 |
+
|
1017 |
+
# In[183]:
|
1018 |
+
|
1019 |
+
|
1020 |
+
splits16
|
1021 |
+
|
1022 |
+
|
1023 |
+
# In[184]:
|
1024 |
+
|
1025 |
+
|
1026 |
+
embeddings16 = embeddings_model.embed_documents(
|
1027 |
+
splits16,
|
1028 |
+
# normalize_embeddings=True,
|
1029 |
+
# batch_size=256,
|
1030 |
+
# show_progress_bar=True
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
|
1034 |
+
# In[185]:
|
1035 |
+
|
1036 |
+
|
1037 |
+
ids16 = [str(uuid.uuid4()) for _ in range(len(splits16))]
|
1038 |
+
|
1039 |
+
|
1040 |
+
# In[186]:
|
1041 |
+
|
1042 |
+
|
1043 |
+
data.add(
|
1044 |
+
documents=splits16,
|
1045 |
+
embeddings=embeddings16,
|
1046 |
+
ids=ids16
|
1047 |
+
)
|
1048 |
+
|
1049 |
+
|
1050 |
+
# # Checking does the data is added or not ✅
|
1051 |
+
|
1052 |
+
# In[188]:
|
1053 |
+
|
1054 |
+
|
1055 |
+
data = data.get(include=['embeddings'])
|
1056 |
+
print(data)
|
1057 |
+
|
1058 |
+
# embeddings_model = SentenceTransformer("HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5")
|
1059 |
+
embeddings_model = HuggingFaceEmbeddings(model_name="HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5")
|
1060 |
+
|
1061 |
+
|
1062 |
+
# # Configure `ChromaDB` for our work
|
1063 |
+
|
1064 |
+
# In[29]:
|
1065 |
+
|
1066 |
+
|
1067 |
+
# chroma_client.delete_collection(name="my_dataaaa") # Deletes "my_dataaaa"
|
1068 |
+
|
1069 |
+
|
1070 |
+
# In[30]:
|
1071 |
+
|
1072 |
+
|
1073 |
+
chroma_db_path = "./chroma_db"
|
1074 |
+
chroma_client = chromadb.PersistentClient(path=chroma_db_path)
|
1075 |
+
|
1076 |
+
|
1077 |
+
# In[31]:
|
1078 |
+
|
1079 |
+
|
1080 |
+
data = chroma_client.get_or_create_collection(name="my_dataaaa")
|
1081 |
+
|
1082 |
+
|
1083 |
+
# # <p style="color: orange;">Document 0 Masteres-Procedure-de-Depot</p>
|
1084 |
+
|
1085 |
+
# In[33]:
|
1086 |
+
|
1087 |
+
|
1088 |
+
loader = WebBaseLoader(
|
1089 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/152/Masteres-Procedure-de-Depot",),
|
1090 |
+
bs_kwargs=dict(
|
1091 |
+
parse_only=bs4.SoupStrainer(
|
1092 |
+
class_=("content")
|
1093 |
+
)
|
1094 |
+
),
|
1095 |
+
)
|
1096 |
+
Masteres_Procedure_de_Depot = loader.load()
|
1097 |
+
|
1098 |
+
|
1099 |
+
# In[34]:
|
1100 |
+
|
1101 |
+
|
1102 |
+
Masteres_Procedure_de_Depot = [
|
1103 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
1104 |
+
for doc in Masteres_Procedure_de_Depot]
|
1105 |
+
Masteres_Procedure_de_Depot
|
1106 |
+
|
1107 |
+
|
1108 |
+
# ## spliiting into chunks the doc0
|
1109 |
+
|
1110 |
+
# In[36]:
|
1111 |
+
|
1112 |
+
|
1113 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100)
|
1114 |
+
splits1 = text_splitter.split_documents( Masteres_Procedure_de_Depot)
|
1115 |
+
|
1116 |
+
|
1117 |
+
# In[37]:
|
1118 |
+
|
1119 |
+
|
1120 |
+
splits1
|
1121 |
+
|
1122 |
+
|
1123 |
+
# ## Saving to chromadb in data
|
1124 |
+
|
1125 |
+
# In[39]:
|
1126 |
+
|
1127 |
+
|
1128 |
+
contents1 = [doc.page_content for doc in splits1]
|
1129 |
+
metadata1 = [doc.metadata for doc in splits1]
|
1130 |
+
|
1131 |
+
|
1132 |
+
# In[40]:
|
1133 |
+
|
1134 |
+
|
1135 |
+
embeddings1 = embeddings_model.embed_documents(
|
1136 |
+
[doc.page_content for doc in splits1],
|
1137 |
+
#normalize_embeddings=True,
|
1138 |
+
#batch_size=256,
|
1139 |
+
#show_progress_bar=True
|
1140 |
+
)
|
1141 |
+
print(embeddings1)
|
1142 |
+
|
1143 |
+
|
1144 |
+
# In[41]:
|
1145 |
+
|
1146 |
+
|
1147 |
+
ids = [str(uuid.uuid4()) for _ in range(len(contents1))]
|
1148 |
+
|
1149 |
+
|
1150 |
+
# In[42]:
|
1151 |
+
|
1152 |
+
|
1153 |
+
data.add(
|
1154 |
+
documents=contents1,
|
1155 |
+
embeddings=embeddings1,
|
1156 |
+
metadatas=metadata1,
|
1157 |
+
ids=ids
|
1158 |
+
)
|
1159 |
+
|
1160 |
+
|
1161 |
+
# In[43]:
|
1162 |
+
|
1163 |
+
|
1164 |
+
# visulizing in a dataframe
|
1165 |
+
data_dict = {
|
1166 |
+
"ID": ids,
|
1167 |
+
"Document": contents1,
|
1168 |
+
"Metadata": metadata1,
|
1169 |
+
"Embedding Shape": [np.array(embed).shape for embed in embeddings1],
|
1170 |
+
}
|
1171 |
+
|
1172 |
+
df = pd.DataFrame(data_dict)
|
1173 |
+
df.tail()
|
1174 |
+
|
1175 |
+
|
1176 |
+
# In[44]:
|
1177 |
+
|
1178 |
+
|
1179 |
+
def append_data(contents, metadata, embeddings):
|
1180 |
+
'''this function will append the embeddings and metadata and
|
1181 |
+
the document into the data_dict so we can visulize how it looks in chrom '''
|
1182 |
+
global df
|
1183 |
+
new_ids = list(range(len(df) + 1, len(df) + 1 + len(contents)))
|
1184 |
+
|
1185 |
+
data_dict["ID"].extend(new_ids)
|
1186 |
+
data_dict["Document"].extend(contents)
|
1187 |
+
data_dict["Metadata"].extend(metadata)
|
1188 |
+
data_dict["Embedding Shape"].extend([np.array(embed).shape for embed in embeddings])
|
1189 |
+
|
1190 |
+
df = pd.DataFrame(data_dict)
|
1191 |
+
|
1192 |
+
|
1193 |
+
# # <p style="color: orange;">Document 1 Theses-Inscriptions-etProcedure-de-Depot</p>
|
1194 |
+
|
1195 |
+
# In[46]:
|
1196 |
+
|
1197 |
+
|
1198 |
+
loader = WebBaseLoader(
|
1199 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/147/Theses-Inscriptions-etProcedure-de-Depot",),
|
1200 |
+
bs_kwargs=dict(
|
1201 |
+
parse_only=bs4.SoupStrainer(
|
1202 |
+
class_=("content")
|
1203 |
+
)
|
1204 |
+
),
|
1205 |
+
)
|
1206 |
+
Theses_Inscriptions_etProcedure_de_Depot = loader.load()
|
1207 |
+
|
1208 |
+
|
1209 |
+
# In[47]:
|
1210 |
+
|
1211 |
+
|
1212 |
+
Theses_Inscriptions_etProcedure_de_Depot = [
|
1213 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
1214 |
+
for doc in Theses_Inscriptions_etProcedure_de_Depot]
|
1215 |
+
Theses_Inscriptions_etProcedure_de_Depot
|
1216 |
+
|
1217 |
+
|
1218 |
+
# ## splitting into chunks the doc1
|
1219 |
+
|
1220 |
+
# In[49]:
|
1221 |
+
|
1222 |
+
|
1223 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
1224 |
+
splits2 = text_splitter.split_documents( Theses_Inscriptions_etProcedure_de_Depot)
|
1225 |
+
|
1226 |
+
|
1227 |
+
# In[50]:
|
1228 |
+
|
1229 |
+
|
1230 |
+
splits2
|
1231 |
+
|
1232 |
+
|
1233 |
+
# In[51]:
|
1234 |
+
|
1235 |
+
|
1236 |
+
contents2= [doc.page_content for doc in splits2]
|
1237 |
+
metadata2 = [doc.metadata for doc in splits2]
|
1238 |
+
|
1239 |
+
|
1240 |
+
# In[52]:
|
1241 |
+
|
1242 |
+
|
1243 |
+
embeddings2 = embeddings_model.embed_documents(
|
1244 |
+
[doc.page_content for doc in splits2],
|
1245 |
+
# normalize_embeddings=True,
|
1246 |
+
# batch_size=256,
|
1247 |
+
# show_progress_bar=True
|
1248 |
+
)
|
1249 |
+
print(embeddings2)
|
1250 |
+
|
1251 |
+
|
1252 |
+
# In[53]:
|
1253 |
+
|
1254 |
+
|
1255 |
+
ids2= [str(uuid.uuid4()) for _ in range(len(contents2))]
|
1256 |
+
|
1257 |
+
|
1258 |
+
# In[54]:
|
1259 |
+
|
1260 |
+
|
1261 |
+
data.add(
|
1262 |
+
documents=contents2,
|
1263 |
+
embeddings=embeddings2,
|
1264 |
+
metadatas=metadata2,
|
1265 |
+
ids=ids2
|
1266 |
+
)
|
1267 |
+
|
1268 |
+
|
1269 |
+
# In[55]:
|
1270 |
+
|
1271 |
+
|
1272 |
+
append_data(contents2, metadata2, embeddings2)
|
1273 |
+
|
1274 |
+
|
1275 |
+
# In[56]:
|
1276 |
+
|
1277 |
+
|
1278 |
+
df
|
1279 |
+
|
1280 |
+
|
1281 |
+
# # <p style="color: orange;"> Document 2 رشة_بعنوان_أهمية_الصحة_النفسية</p>
|
1282 |
+
|
1283 |
+
# In[58]:
|
1284 |
+
|
1285 |
+
|
1286 |
+
loader = WebBaseLoader(
|
1287 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/4798/%D9%88%D8%B1%D8%B4%D8%A9-%D8%A8%D8%B9%D9%86%D9%88%D8%A7%D9%86-%D8%A3%D9%87%D9%85%D9%8A%D8%A9-%D8%A7%D9%84%D8%B5%D8%AD%D8%A9-%D8%A7%D9%84%D9%86%D9%81%D8%B3%D9%8A%D8%A9",),
|
1288 |
+
bs_kwargs=dict(
|
1289 |
+
parse_only=bs4.SoupStrainer(
|
1290 |
+
class_=("content")
|
1291 |
+
)
|
1292 |
+
),
|
1293 |
+
)
|
1294 |
+
warcha_mental_health = loader.load()
|
1295 |
+
|
1296 |
+
|
1297 |
+
# In[59]:
|
1298 |
+
|
1299 |
+
|
1300 |
+
warcha_mental_health = [
|
1301 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
1302 |
+
for doc in warcha_mental_health]
|
1303 |
+
warcha_mental_health
|
1304 |
+
|
1305 |
+
|
1306 |
+
# ## spitting doc 2 into chunks
|
1307 |
+
|
1308 |
+
# In[61]:
|
1309 |
+
|
1310 |
+
|
1311 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
1312 |
+
splits3 = text_splitter.split_documents( warcha_mental_health)
|
1313 |
+
|
1314 |
+
|
1315 |
+
# In[62]:
|
1316 |
+
|
1317 |
+
|
1318 |
+
splits3
|
1319 |
+
|
1320 |
+
|
1321 |
+
# In[63]:
|
1322 |
+
|
1323 |
+
|
1324 |
+
contents3= [doc.page_content for doc in splits3]
|
1325 |
+
metadata3 = [doc.metadata for doc in splits3]
|
1326 |
+
|
1327 |
+
|
1328 |
+
# In[64]:
|
1329 |
+
|
1330 |
+
|
1331 |
+
embeddings3 = embeddings_model.embed_documents(
|
1332 |
+
[doc.page_content for doc in splits3],
|
1333 |
+
# normalize_embeddings=True,
|
1334 |
+
# batch_size=256,
|
1335 |
+
# show_progress_bar=True
|
1336 |
+
)
|
1337 |
+
print(embeddings3)
|
1338 |
+
|
1339 |
+
|
1340 |
+
# In[65]:
|
1341 |
+
|
1342 |
+
|
1343 |
+
ids3 = [str(uuid.uuid4()) for _ in range(len(contents3))]
|
1344 |
+
|
1345 |
+
|
1346 |
+
# In[66]:
|
1347 |
+
|
1348 |
+
|
1349 |
+
data.add(
|
1350 |
+
documents=contents3,
|
1351 |
+
embeddings=embeddings3,
|
1352 |
+
metadatas=metadata3,
|
1353 |
+
ids=ids3
|
1354 |
+
)
|
1355 |
+
|
1356 |
+
|
1357 |
+
# In[67]:
|
1358 |
+
|
1359 |
+
|
1360 |
+
append_data(contents3, metadata3, embeddings3)
|
1361 |
+
|
1362 |
+
|
1363 |
+
# In[68]:
|
1364 |
+
|
1365 |
+
|
1366 |
+
df.tail()
|
1367 |
+
|
1368 |
+
|
1369 |
+
# # <p style="color: orange;"> Document 3 festival-de-la-creativite-estudiantine</p>
|
1370 |
+
|
1371 |
+
# In[70]:
|
1372 |
+
|
1373 |
+
|
1374 |
+
loader = WebBaseLoader(
|
1375 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/4795/festival-de-la-creativite-estudiantine",),
|
1376 |
+
bs_kwargs=dict(
|
1377 |
+
parse_only=bs4.SoupStrainer(
|
1378 |
+
class_=("content")
|
1379 |
+
)
|
1380 |
+
),
|
1381 |
+
)
|
1382 |
+
festival_de_la_creativite_estudiantinet = loader.load()
|
1383 |
+
|
1384 |
+
|
1385 |
+
# In[71]:
|
1386 |
+
|
1387 |
+
|
1388 |
+
festival_de_la_creativite_estudiantinet = [
|
1389 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
1390 |
+
for doc in festival_de_la_creativite_estudiantinet]
|
1391 |
+
festival_de_la_creativite_estudiantinet
|
1392 |
+
|
1393 |
+
|
1394 |
+
# ## splitting the Doc3 into chunks
|
1395 |
+
|
1396 |
+
# In[73]:
|
1397 |
+
|
1398 |
+
|
1399 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
1400 |
+
splits4 = text_splitter.split_documents( festival_de_la_creativite_estudiantinet)
|
1401 |
+
|
1402 |
+
|
1403 |
+
# In[74]:
|
1404 |
+
|
1405 |
+
|
1406 |
+
print(splits4[0].page_content) # First chunk's content
|
1407 |
+
print(splits4[0].metadata)
|
1408 |
+
|
1409 |
+
|
1410 |
+
# In[75]:
|
1411 |
+
|
1412 |
+
|
1413 |
+
contents4= [doc.page_content for doc in splits4]
|
1414 |
+
metadata4 = [doc.metadata for doc in splits4]
|
1415 |
+
|
1416 |
+
|
1417 |
+
# In[76]:
|
1418 |
+
|
1419 |
+
|
1420 |
+
embeddings4 = embeddings_model.embed_documents(
|
1421 |
+
[doc.page_content for doc in splits4],
|
1422 |
+
# normalize_embeddings=True,
|
1423 |
+
# batch_size=256,
|
1424 |
+
# show_progress_bar=True
|
1425 |
+
)
|
1426 |
+
print(embeddings4)
|
1427 |
+
|
1428 |
+
|
1429 |
+
# In[77]:
|
1430 |
+
|
1431 |
+
|
1432 |
+
ids4 = [str(uuid.uuid4()) for _ in range(len(contents4))]
|
1433 |
+
|
1434 |
+
|
1435 |
+
# In[78]:
|
1436 |
+
|
1437 |
+
|
1438 |
+
data.add(
|
1439 |
+
documents=contents4,
|
1440 |
+
embeddings=embeddings4,
|
1441 |
+
metadatas=metadata4,
|
1442 |
+
ids=ids4
|
1443 |
+
)
|
1444 |
+
|
1445 |
+
|
1446 |
+
# In[79]:
|
1447 |
+
|
1448 |
+
|
1449 |
+
append_data(contents4, metadata4, embeddings4)
|
1450 |
+
|
1451 |
+
|
1452 |
+
# In[80]:
|
1453 |
+
|
1454 |
+
|
1455 |
+
df
|
1456 |
+
|
1457 |
+
|
1458 |
+
# # <p style="color: orange;"> Document 4 bourses-d-alternance-2025</p>
|
1459 |
+
|
1460 |
+
# In[82]:
|
1461 |
+
|
1462 |
+
|
1463 |
+
loader = WebBaseLoader(
|
1464 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/4813/bourses-d-alternance-2025",),
|
1465 |
+
bs_kwargs=dict(
|
1466 |
+
parse_only=bs4.SoupStrainer(
|
1467 |
+
class_=("content")
|
1468 |
+
)
|
1469 |
+
),
|
1470 |
+
)
|
1471 |
+
Bourse_alternance = loader.load()
|
1472 |
+
|
1473 |
+
|
1474 |
+
# In[83]:
|
1475 |
+
|
1476 |
+
|
1477 |
+
Bourse_alternance = [
|
1478 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
1479 |
+
for doc in Bourse_alternance]
|
1480 |
+
Bourse_alternance
|
1481 |
+
|
1482 |
+
|
1483 |
+
# ## splitting doc 4 into chunks
|
1484 |
+
|
1485 |
+
# In[85]:
|
1486 |
+
|
1487 |
+
|
1488 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
1489 |
+
splits5 = text_splitter.split_documents( Bourse_alternance)
|
1490 |
+
|
1491 |
+
|
1492 |
+
# In[86]:
|
1493 |
+
|
1494 |
+
|
1495 |
+
print(splits5[2].page_content)
|
1496 |
+
print(splits5[2].metadata)
|
1497 |
+
|
1498 |
+
|
1499 |
+
# In[87]:
|
1500 |
+
|
1501 |
+
|
1502 |
+
contents5= [doc.page_content for doc in splits5]
|
1503 |
+
metadata5 = [doc.metadata for doc in splits5]
|
1504 |
+
|
1505 |
+
|
1506 |
+
# In[88]:
|
1507 |
+
|
1508 |
+
|
1509 |
+
embeddings5 = embeddings_model.embed_documents(
|
1510 |
+
[doc.page_content for doc in splits5],
|
1511 |
+
# normalize_embeddings=True,
|
1512 |
+
# batch_size=256,
|
1513 |
+
# show_progress_bar=True
|
1514 |
+
)
|
1515 |
+
print(embeddings5)
|
1516 |
+
|
1517 |
+
|
1518 |
+
# In[89]:
|
1519 |
+
|
1520 |
+
|
1521 |
+
ids5 = [str(uuid.uuid4()) for _ in range(len(contents5))]
|
1522 |
+
|
1523 |
+
|
1524 |
+
# In[90]:
|
1525 |
+
|
1526 |
+
|
1527 |
+
data.add(
|
1528 |
+
documents=contents5,
|
1529 |
+
embeddings=embeddings5,
|
1530 |
+
metadatas=metadata5,
|
1531 |
+
ids=ids5
|
1532 |
+
)
|
1533 |
+
|
1534 |
+
|
1535 |
+
# In[91]:
|
1536 |
+
|
1537 |
+
|
1538 |
+
append_data(contents5, metadata5, embeddings5)
|
1539 |
+
|
1540 |
+
|
1541 |
+
# In[92]:
|
1542 |
+
|
1543 |
+
|
1544 |
+
df
|
1545 |
+
|
1546 |
+
|
1547 |
+
# # <p style="color: orange;"> Document 5 the-indian-council-for-cultural-relations--iccr</p>
|
1548 |
+
|
1549 |
+
# In[94]:
|
1550 |
+
|
1551 |
+
|
1552 |
+
loader = WebBaseLoader(
|
1553 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/4807/the-indian-council-for-cultural-relations--iccr-",),
|
1554 |
+
bs_kwargs=dict(
|
1555 |
+
parse_only=bs4.SoupStrainer(
|
1556 |
+
class_=("content")
|
1557 |
+
)
|
1558 |
+
),
|
1559 |
+
)
|
1560 |
+
the_indian_council_for_cultural_relations = loader.load()
|
1561 |
+
|
1562 |
+
|
1563 |
+
# In[95]:
|
1564 |
+
|
1565 |
+
|
1566 |
+
the_indian_council_for_cultural_relations = [
|
1567 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
1568 |
+
for doc in the_indian_council_for_cultural_relations]
|
1569 |
+
the_indian_council_for_cultural_relations
|
1570 |
+
|
1571 |
+
|
1572 |
+
# ## splitting doc 5 into chunks
|
1573 |
+
|
1574 |
+
# In[97]:
|
1575 |
+
|
1576 |
+
|
1577 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
1578 |
+
splits6 = text_splitter.split_documents( the_indian_council_for_cultural_relations)
|
1579 |
+
|
1580 |
+
|
1581 |
+
# In[98]:
|
1582 |
+
|
1583 |
+
|
1584 |
+
splits6
|
1585 |
+
|
1586 |
+
|
1587 |
+
# In[99]:
|
1588 |
+
|
1589 |
+
|
1590 |
+
contents6= [doc.page_content for doc in splits6]
|
1591 |
+
metadata6 = [doc.metadata for doc in splits6]
|
1592 |
+
|
1593 |
+
|
1594 |
+
# In[100]:
|
1595 |
+
|
1596 |
+
|
1597 |
+
embeddings6 = embeddings_model.embed_documents(
|
1598 |
+
[doc.page_content for doc in splits6],
|
1599 |
+
# normalize_embeddings=True,
|
1600 |
+
# batch_size=256,
|
1601 |
+
# show_progress_bar=True
|
1602 |
+
)
|
1603 |
+
print(embeddings6)
|
1604 |
+
|
1605 |
+
|
1606 |
+
# In[101]:
|
1607 |
+
|
1608 |
+
|
1609 |
+
ids6 = [str(uuid.uuid4()) for _ in range(len(contents6))]
|
1610 |
+
|
1611 |
+
|
1612 |
+
# In[102]:
|
1613 |
+
|
1614 |
+
|
1615 |
+
data.add(
|
1616 |
+
documents=contents6,
|
1617 |
+
embeddings=embeddings6,
|
1618 |
+
metadatas=metadata6,
|
1619 |
+
ids=ids6
|
1620 |
+
)
|
1621 |
+
|
1622 |
+
|
1623 |
+
# In[103]:
|
1624 |
+
|
1625 |
+
|
1626 |
+
append_data(contents6, metadata6, embeddings6)
|
1627 |
+
|
1628 |
+
|
1629 |
+
# In[104]:
|
1630 |
+
|
1631 |
+
|
1632 |
+
df
|
1633 |
+
|
1634 |
+
|
1635 |
+
# In[105]:
|
1636 |
+
|
1637 |
+
|
1638 |
+
# page_url = "https://fsm.rnu.tn/useruploads/files/au2425/NV%20ICCR.pdf"
|
1639 |
+
# loader = PyPDFLoader(page_url)
|
1640 |
+
|
1641 |
+
# applications_guidelines_indian = []
|
1642 |
+
# async for doc in loader.alazy_load():
|
1643 |
+
# applications_guidelines_indian.append(doc)
|
1644 |
+
|
1645 |
+
|
1646 |
+
# In[106]:
|
1647 |
+
|
1648 |
+
|
1649 |
+
# applications_guidelines_indian
|
1650 |
+
|
1651 |
+
|
1652 |
+
# In[107]:
|
1653 |
+
|
1654 |
+
|
1655 |
+
# documents6
|
1656 |
+
|
1657 |
+
|
1658 |
+
# In[108]:
|
1659 |
+
|
1660 |
+
|
1661 |
+
# pip install "unstructured[pdf]"
|
1662 |
+
|
1663 |
+
|
1664 |
+
# # <p style="color: orange;"> Document 6 Règlement intérieur des examens</p>
|
1665 |
+
|
1666 |
+
# In[110]:
|
1667 |
+
|
1668 |
+
|
1669 |
+
loader = WebBaseLoader(
|
1670 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/346/R%C3%A8glement-int%C3%A9rieur-des-examens",),
|
1671 |
+
bs_kwargs=dict(
|
1672 |
+
parse_only=bs4.SoupStrainer(
|
1673 |
+
class_=("content")
|
1674 |
+
)
|
1675 |
+
),
|
1676 |
+
)
|
1677 |
+
Règlement_intérieur_des_examens = loader.load()
|
1678 |
+
|
1679 |
+
|
1680 |
+
# In[111]:
|
1681 |
+
|
1682 |
+
|
1683 |
+
Règlement_intérieur_des_examens = [
|
1684 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
1685 |
+
for doc in Règlement_intérieur_des_examens]
|
1686 |
+
Règlement_intérieur_des_examens
|
1687 |
+
|
1688 |
+
|
1689 |
+
# ## splitting doc 6 into chunks
|
1690 |
+
|
1691 |
+
# In[113]:
|
1692 |
+
|
1693 |
+
|
1694 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
1695 |
+
splits7 = text_splitter.split_documents( Règlement_intérieur_des_examens)
|
1696 |
+
|
1697 |
+
|
1698 |
+
# In[114]:
|
1699 |
+
|
1700 |
+
|
1701 |
+
splits7
|
1702 |
+
|
1703 |
+
|
1704 |
+
# In[115]:
|
1705 |
+
|
1706 |
+
|
1707 |
+
contents7= [doc.page_content for doc in splits7]
|
1708 |
+
metadata7 = [doc.metadata for doc in splits7]
|
1709 |
+
|
1710 |
+
|
1711 |
+
# In[116]:
|
1712 |
+
|
1713 |
+
|
1714 |
+
embeddings7 = embeddings_model.embed_documents(
|
1715 |
+
[doc.page_content for doc in splits7],
|
1716 |
+
# normalize_embeddings=True,
|
1717 |
+
# batch_size=256,
|
1718 |
+
# show_progress_bar=True
|
1719 |
+
)
|
1720 |
+
print(embeddings7)
|
1721 |
+
|
1722 |
+
|
1723 |
+
# In[117]:
|
1724 |
+
|
1725 |
+
|
1726 |
+
ids7 = [str(uuid.uuid4()) for _ in range(len(contents7))]
|
1727 |
+
|
1728 |
+
|
1729 |
+
# In[118]:
|
1730 |
+
|
1731 |
+
|
1732 |
+
data.add(
|
1733 |
+
documents=contents7,
|
1734 |
+
embeddings=embeddings7,
|
1735 |
+
metadatas=metadata7,
|
1736 |
+
ids=ids7
|
1737 |
+
)
|
1738 |
+
|
1739 |
+
|
1740 |
+
# In[119]:
|
1741 |
+
|
1742 |
+
|
1743 |
+
append_data(contents7, metadata7, embeddings7)
|
1744 |
+
|
1745 |
+
|
1746 |
+
# In[120]:
|
1747 |
+
|
1748 |
+
|
1749 |
+
df
|
1750 |
+
|
1751 |
+
|
1752 |
+
# # <p style="color: orange;">Document 7 Gestion des Stages & PFE (CPE-BR-01-00)</p>
|
1753 |
+
|
1754 |
+
# In[122]:
|
1755 |
+
|
1756 |
+
|
1757 |
+
loader = WebBaseLoader(
|
1758 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/73/Stages-&-PFE",),
|
1759 |
+
bs_kwargs=dict(
|
1760 |
+
parse_only=bs4.SoupStrainer(
|
1761 |
+
class_=("content")
|
1762 |
+
)
|
1763 |
+
),
|
1764 |
+
)
|
1765 |
+
Stages_PFE = loader.load()
|
1766 |
+
|
1767 |
+
|
1768 |
+
# In[123]:
|
1769 |
+
|
1770 |
+
|
1771 |
+
Stages_PFE = [
|
1772 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
1773 |
+
for doc in Stages_PFE]
|
1774 |
+
Stages_PFE
|
1775 |
+
|
1776 |
+
|
1777 |
+
# ## splitting doc 7 into chunks
|
1778 |
+
|
1779 |
+
# In[125]:
|
1780 |
+
|
1781 |
+
|
1782 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
1783 |
+
splits8 = text_splitter.split_documents( Stages_PFE)
|
1784 |
+
|
1785 |
+
|
1786 |
+
# In[126]:
|
1787 |
+
|
1788 |
+
|
1789 |
+
splits8
|
1790 |
+
|
1791 |
+
|
1792 |
+
# In[127]:
|
1793 |
+
|
1794 |
+
|
1795 |
+
contents8= [doc.page_content for doc in splits8]
|
1796 |
+
metadata8 = [doc.metadata for doc in splits8]
|
1797 |
+
|
1798 |
+
|
1799 |
+
# In[128]:
|
1800 |
+
|
1801 |
+
|
1802 |
+
embeddings8= embeddings_model.embed_documents(
|
1803 |
+
[doc.page_content for doc in splits8],
|
1804 |
+
# normalize_embeddings=True,
|
1805 |
+
# batch_size=256,
|
1806 |
+
# show_progress_bar=True
|
1807 |
+
)
|
1808 |
+
print(embeddings8)
|
1809 |
+
|
1810 |
+
|
1811 |
+
# In[129]:
|
1812 |
+
|
1813 |
+
|
1814 |
+
ids8 = [str(uuid.uuid4()) for _ in range(len(contents8))]
|
1815 |
+
|
1816 |
+
|
1817 |
+
# In[130]:
|
1818 |
+
|
1819 |
+
|
1820 |
+
data.add(
|
1821 |
+
documents=contents8,
|
1822 |
+
embeddings=embeddings8,
|
1823 |
+
metadatas=metadata8,
|
1824 |
+
ids=ids8
|
1825 |
+
)
|
1826 |
+
|
1827 |
+
|
1828 |
+
# In[131]:
|
1829 |
+
|
1830 |
+
|
1831 |
+
append_data(contents8, metadata8, embeddings8)
|
1832 |
+
|
1833 |
+
|
1834 |
+
# In[132]:
|
1835 |
+
|
1836 |
+
|
1837 |
+
df
|
1838 |
+
|
1839 |
+
|
1840 |
+
# # <p style="color: orange;">Document 8 Procédure de déroulement des stages facultatifs (CPE-IN-01-00)</p>
|
1841 |
+
|
1842 |
+
# In[134]:
|
1843 |
+
|
1844 |
+
|
1845 |
+
loader = WebBaseLoader(
|
1846 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/437/Proc%C3%A9dure-de-d%C3%A9roulement-des-stages-facultatif",),
|
1847 |
+
bs_kwargs=dict(
|
1848 |
+
parse_only=bs4.SoupStrainer(
|
1849 |
+
class_=("content")
|
1850 |
+
)
|
1851 |
+
),
|
1852 |
+
)
|
1853 |
+
Procédure_de_déroulement_des_stages_facultatifs = loader.load()
|
1854 |
+
|
1855 |
+
|
1856 |
+
# In[135]:
|
1857 |
+
|
1858 |
+
|
1859 |
+
Procédure_de_déroulement_des_stages_facultatifs = [
|
1860 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
1861 |
+
for doc in Procédure_de_déroulement_des_stages_facultatifs]
|
1862 |
+
Procédure_de_déroulement_des_stages_facultatifs
|
1863 |
+
|
1864 |
+
|
1865 |
+
# ## splitting doc 8 into chunks
|
1866 |
+
|
1867 |
+
# In[137]:
|
1868 |
+
|
1869 |
+
|
1870 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
1871 |
+
splits9 = text_splitter.split_documents( Procédure_de_déroulement_des_stages_facultatifs)
|
1872 |
+
|
1873 |
+
|
1874 |
+
# In[138]:
|
1875 |
+
|
1876 |
+
|
1877 |
+
splits9
|
1878 |
+
|
1879 |
+
|
1880 |
+
# In[139]:
|
1881 |
+
|
1882 |
+
|
1883 |
+
contents9= [doc.page_content for doc in splits9]
|
1884 |
+
metadata9 = [doc.metadata for doc in splits9]
|
1885 |
+
|
1886 |
+
|
1887 |
+
# In[140]:
|
1888 |
+
|
1889 |
+
|
1890 |
+
embeddings9 = embeddings_model.embed_documents(
|
1891 |
+
[doc.page_content for doc in splits9],
|
1892 |
+
# normalize_embeddings=True,
|
1893 |
+
# batch_size=256,
|
1894 |
+
# show_progress_bar=True
|
1895 |
+
)
|
1896 |
+
print(embeddings9)
|
1897 |
+
|
1898 |
+
|
1899 |
+
# In[141]:
|
1900 |
+
|
1901 |
+
|
1902 |
+
ids9 = [str(uuid.uuid4()) for _ in range(len(contents9))]
|
1903 |
+
|
1904 |
+
|
1905 |
+
# In[142]:
|
1906 |
+
|
1907 |
+
|
1908 |
+
data.add(
|
1909 |
+
documents=contents9,
|
1910 |
+
embeddings=embeddings9,
|
1911 |
+
metadatas=metadata9,
|
1912 |
+
ids=ids9
|
1913 |
+
)
|
1914 |
+
|
1915 |
+
|
1916 |
+
# In[143]:
|
1917 |
+
|
1918 |
+
|
1919 |
+
append_data(contents9, metadata9, embeddings9)
|
1920 |
+
|
1921 |
+
|
1922 |
+
# In[144]:
|
1923 |
+
|
1924 |
+
|
1925 |
+
df
|
1926 |
+
|
1927 |
+
|
1928 |
+
# # <p style="color: orange;"> Document 9 Procédure de déroulement des stages obligatoires (CPE-IN-02-00)</p>
|
1929 |
+
|
1930 |
+
# In[146]:
|
1931 |
+
|
1932 |
+
|
1933 |
+
loader = WebBaseLoader(
|
1934 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/75/Proc%C3%A9dure-de-d%C3%A9roulement-des-stages",),
|
1935 |
+
bs_kwargs=dict(
|
1936 |
+
parse_only=bs4.SoupStrainer(
|
1937 |
+
class_=("content")
|
1938 |
+
)
|
1939 |
+
),
|
1940 |
+
)
|
1941 |
+
Procédure_de_déroulement_des_stages_obligatoires = loader.load()
|
1942 |
+
|
1943 |
+
|
1944 |
+
# In[147]:
|
1945 |
+
|
1946 |
+
|
1947 |
+
Procédure_de_déroulement_des_stages_obligatoires = [
|
1948 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
1949 |
+
for doc in Procédure_de_déroulement_des_stages_obligatoires]
|
1950 |
+
Procédure_de_déroulement_des_stages_obligatoires
|
1951 |
+
|
1952 |
+
|
1953 |
+
# ## splitting doc 9 into chunks
|
1954 |
+
|
1955 |
+
# In[149]:
|
1956 |
+
|
1957 |
+
|
1958 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
1959 |
+
splits10= text_splitter.split_documents(Procédure_de_déroulement_des_stages_obligatoires)
|
1960 |
+
|
1961 |
+
|
1962 |
+
# In[150]:
|
1963 |
+
|
1964 |
+
|
1965 |
+
splits10
|
1966 |
+
|
1967 |
+
|
1968 |
+
# In[151]:
|
1969 |
+
|
1970 |
+
|
1971 |
+
contents10= [doc.page_content for doc in splits10]
|
1972 |
+
metadata10 = [doc.metadata for doc in splits10]
|
1973 |
+
|
1974 |
+
|
1975 |
+
# In[152]:
|
1976 |
+
|
1977 |
+
|
1978 |
+
embeddings10 = embeddings_model.embed_documents(
|
1979 |
+
[doc.page_content for doc in splits10],
|
1980 |
+
# normalize_embeddings=True,
|
1981 |
+
# batch_size=256,
|
1982 |
+
# show_progress_bar=True
|
1983 |
+
)
|
1984 |
+
print(embeddings10)
|
1985 |
+
|
1986 |
+
|
1987 |
+
# In[153]:
|
1988 |
+
|
1989 |
+
|
1990 |
+
ids10 = [str(uuid.uuid4()) for _ in range(len(contents10))]
|
1991 |
+
|
1992 |
+
|
1993 |
+
# In[154]:
|
1994 |
+
|
1995 |
+
|
1996 |
+
data.add(
|
1997 |
+
documents=contents10,
|
1998 |
+
embeddings=embeddings10,
|
1999 |
+
metadatas=metadata10,
|
2000 |
+
ids=ids10
|
2001 |
+
)
|
2002 |
+
|
2003 |
+
|
2004 |
+
# In[155]:
|
2005 |
+
|
2006 |
+
|
2007 |
+
append_data(contents10, metadata10, embeddings10)
|
2008 |
+
|
2009 |
+
|
2010 |
+
# In[156]:
|
2011 |
+
|
2012 |
+
|
2013 |
+
df
|
2014 |
+
|
2015 |
+
|
2016 |
+
# # <p style="color: orange;"> Document 10 Partenariat international</p>
|
2017 |
+
|
2018 |
+
# In[158]:
|
2019 |
+
|
2020 |
+
|
2021 |
+
loader = WebBaseLoader(
|
2022 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/9/Partenariat-international",),
|
2023 |
+
bs_kwargs=dict(
|
2024 |
+
parse_only=bs4.SoupStrainer(
|
2025 |
+
class_=("content")
|
2026 |
+
)
|
2027 |
+
),
|
2028 |
+
)
|
2029 |
+
Partenariat_international = loader.load()
|
2030 |
+
|
2031 |
+
|
2032 |
+
# In[159]:
|
2033 |
+
|
2034 |
+
|
2035 |
+
Partenariat_international = [
|
2036 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
2037 |
+
for doc in Partenariat_international]
|
2038 |
+
Partenariat_international
|
2039 |
+
|
2040 |
+
|
2041 |
+
# ## splitting doc 10 into chunks
|
2042 |
+
|
2043 |
+
# In[161]:
|
2044 |
+
|
2045 |
+
|
2046 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
2047 |
+
splits11 = text_splitter.split_documents(Partenariat_international)
|
2048 |
+
|
2049 |
+
|
2050 |
+
# In[162]:
|
2051 |
+
|
2052 |
+
|
2053 |
+
splits11
|
2054 |
+
|
2055 |
+
|
2056 |
+
# In[163]:
|
2057 |
+
|
2058 |
+
|
2059 |
+
contents11= [doc.page_content for doc in splits11]
|
2060 |
+
metadata11 = [doc.metadata for doc in splits11]
|
2061 |
+
|
2062 |
+
|
2063 |
+
# In[164]:
|
2064 |
+
|
2065 |
+
|
2066 |
+
embeddings11 = embeddings_model.embed_documents(
|
2067 |
+
[doc.page_content for doc in splits11],
|
2068 |
+
# normalize_embeddings=True,
|
2069 |
+
# batch_size=256,
|
2070 |
+
# show_progress_bar=True
|
2071 |
+
)
|
2072 |
+
print(embeddings11)
|
2073 |
+
|
2074 |
+
|
2075 |
+
# In[165]:
|
2076 |
+
|
2077 |
+
|
2078 |
+
ids11 = [str(uuid.uuid4()) for _ in range(len(contents11))]
|
2079 |
+
|
2080 |
+
|
2081 |
+
# In[166]:
|
2082 |
+
|
2083 |
+
|
2084 |
+
data.add(
|
2085 |
+
documents=contents11,
|
2086 |
+
embeddings=embeddings11,
|
2087 |
+
metadatas=metadata11,
|
2088 |
+
ids=ids11
|
2089 |
+
)
|
2090 |
+
|
2091 |
+
|
2092 |
+
# In[167]:
|
2093 |
+
|
2094 |
+
|
2095 |
+
append_data(contents11, metadata11, embeddings11)
|
2096 |
+
|
2097 |
+
|
2098 |
+
# In[168]:
|
2099 |
+
|
2100 |
+
|
2101 |
+
df
|
2102 |
+
|
2103 |
+
|
2104 |
+
# # <p style="color: orange;"> Document 11 Communication</p>
|
2105 |
+
|
2106 |
+
# In[170]:
|
2107 |
+
|
2108 |
+
|
2109 |
+
loader = WebBaseLoader(
|
2110 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/140/Communication",),
|
2111 |
+
bs_kwargs=dict(
|
2112 |
+
parse_only=bs4.SoupStrainer(
|
2113 |
+
class_=("content")
|
2114 |
+
)
|
2115 |
+
),
|
2116 |
+
)
|
2117 |
+
Communication = loader.load()
|
2118 |
+
|
2119 |
+
|
2120 |
+
# In[171]:
|
2121 |
+
|
2122 |
+
|
2123 |
+
Communication = [
|
2124 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
2125 |
+
for doc in Communication]
|
2126 |
+
Communication
|
2127 |
+
|
2128 |
+
|
2129 |
+
# ## splitting doc 11 into chunks
|
2130 |
+
|
2131 |
+
# In[173]:
|
2132 |
+
|
2133 |
+
|
2134 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
2135 |
+
splits12 = text_splitter.split_documents(Communication)
|
2136 |
+
|
2137 |
+
|
2138 |
+
# In[174]:
|
2139 |
+
|
2140 |
+
|
2141 |
+
splits12
|
2142 |
+
|
2143 |
+
|
2144 |
+
# In[175]:
|
2145 |
+
|
2146 |
+
|
2147 |
+
contents12= [doc.page_content for doc in splits12]
|
2148 |
+
metadata12 = [doc.metadata for doc in splits12]
|
2149 |
+
|
2150 |
+
|
2151 |
+
# In[176]:
|
2152 |
+
|
2153 |
+
|
2154 |
+
embeddings12 = embeddings_model.embed_documents(
|
2155 |
+
[doc.page_content for doc in splits12],
|
2156 |
+
# normalize_embeddings=True,
|
2157 |
+
# batch_size=256,
|
2158 |
+
# show_progress_bar=True
|
2159 |
+
)
|
2160 |
+
print(embeddings12)
|
2161 |
+
|
2162 |
+
|
2163 |
+
# In[177]:
|
2164 |
+
|
2165 |
+
|
2166 |
+
ids12 = [str(uuid.uuid4()) for _ in range(len(contents12))]
|
2167 |
+
|
2168 |
+
|
2169 |
+
# In[178]:
|
2170 |
+
|
2171 |
+
|
2172 |
+
data.add(
|
2173 |
+
documents=contents12,
|
2174 |
+
embeddings=embeddings12,
|
2175 |
+
metadatas=metadata12,
|
2176 |
+
ids=ids12
|
2177 |
+
)
|
2178 |
+
|
2179 |
+
|
2180 |
+
# In[179]:
|
2181 |
+
|
2182 |
+
|
2183 |
+
append_data(contents12, metadata12, embeddings12)
|
2184 |
+
|
2185 |
+
|
2186 |
+
# In[180]:
|
2187 |
+
|
2188 |
+
|
2189 |
+
df
|
2190 |
+
|
2191 |
+
|
2192 |
+
# # <p style="color: orange;"> Document 12 Liens utiles</p>
|
2193 |
+
|
2194 |
+
# In[182]:
|
2195 |
+
|
2196 |
+
|
2197 |
+
loader = WebBaseLoader(
|
2198 |
+
web_paths=("https://fsm.rnu.tn/fra/links",),
|
2199 |
+
bs_kwargs=dict(
|
2200 |
+
parse_only=bs4.SoupStrainer(
|
2201 |
+
class_=("links_container","link_item","link_tags")
|
2202 |
+
)
|
2203 |
+
),
|
2204 |
+
)
|
2205 |
+
Liens_utiles = loader.load()
|
2206 |
+
|
2207 |
+
|
2208 |
+
# In[183]:
|
2209 |
+
|
2210 |
+
|
2211 |
+
Liens_utiles = [
|
2212 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
2213 |
+
for doc in Liens_utiles]
|
2214 |
+
Liens_utiles
|
2215 |
+
|
2216 |
+
|
2217 |
+
# ## splitting doc 12 into chunks
|
2218 |
+
|
2219 |
+
# In[185]:
|
2220 |
+
|
2221 |
+
|
2222 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
2223 |
+
splits13 = text_splitter.split_documents(Liens_utiles)
|
2224 |
+
|
2225 |
+
|
2226 |
+
# In[186]:
|
2227 |
+
|
2228 |
+
|
2229 |
+
splits13
|
2230 |
+
|
2231 |
+
|
2232 |
+
# In[187]:
|
2233 |
+
|
2234 |
+
|
2235 |
+
contents13= [doc.page_content for doc in splits13]
|
2236 |
+
metadata13 = [doc.metadata for doc in splits13]
|
2237 |
+
|
2238 |
+
|
2239 |
+
# In[188]:
|
2240 |
+
|
2241 |
+
|
2242 |
+
embeddings13 = embeddings_model.embed_documents(
|
2243 |
+
[doc.page_content for doc in splits13],
|
2244 |
+
# normalize_embeddings=True,
|
2245 |
+
# batch_size=256,
|
2246 |
+
# show_progress_bar=True
|
2247 |
+
)
|
2248 |
+
print(embeddings13)
|
2249 |
+
|
2250 |
+
|
2251 |
+
# In[189]:
|
2252 |
+
|
2253 |
+
|
2254 |
+
ids13 = [str(uuid.uuid4()) for _ in range(len(contents13))]
|
2255 |
+
|
2256 |
+
|
2257 |
+
# In[190]:
|
2258 |
+
|
2259 |
+
|
2260 |
+
data.add(
|
2261 |
+
documents=contents13,
|
2262 |
+
embeddings=embeddings13,
|
2263 |
+
metadatas=metadata13,
|
2264 |
+
ids=ids13
|
2265 |
+
)
|
2266 |
+
|
2267 |
+
|
2268 |
+
# In[191]:
|
2269 |
+
|
2270 |
+
|
2271 |
+
append_data(contents13, metadata13, embeddings13)
|
2272 |
+
|
2273 |
+
|
2274 |
+
# In[192]:
|
2275 |
+
|
2276 |
+
|
2277 |
+
df
|
2278 |
+
|
2279 |
+
|
2280 |
+
# # <p style="color: orange;"> Document 13 Departement Chimie </p>
|
2281 |
+
|
2282 |
+
# In[194]:
|
2283 |
+
|
2284 |
+
|
2285 |
+
loader = WebBaseLoader(
|
2286 |
+
web_paths=("https://fsm.rnu.tn/fra/departements/CH/4/chimie",),
|
2287 |
+
bs_kwargs=dict(
|
2288 |
+
parse_only=bs4.SoupStrainer(
|
2289 |
+
class_=("content")
|
2290 |
+
)
|
2291 |
+
),
|
2292 |
+
)
|
2293 |
+
Chimie = loader.load()
|
2294 |
+
|
2295 |
+
|
2296 |
+
# In[195]:
|
2297 |
+
|
2298 |
+
|
2299 |
+
Chimie = [
|
2300 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
2301 |
+
for doc in Chimie]
|
2302 |
+
Chimie
|
2303 |
+
|
2304 |
+
|
2305 |
+
# ## splitting doc 13 into chunks
|
2306 |
+
|
2307 |
+
# In[197]:
|
2308 |
+
|
2309 |
+
|
2310 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
2311 |
+
splits14 = text_splitter.split_documents(Chimie)
|
2312 |
+
|
2313 |
+
|
2314 |
+
# In[198]:
|
2315 |
+
|
2316 |
+
|
2317 |
+
splits14
|
2318 |
+
|
2319 |
+
|
2320 |
+
# In[199]:
|
2321 |
+
|
2322 |
+
|
2323 |
+
contents14= [doc.page_content for doc in splits14]
|
2324 |
+
metadata14 = [doc.metadata for doc in splits14]
|
2325 |
+
|
2326 |
+
|
2327 |
+
# In[200]:
|
2328 |
+
|
2329 |
+
|
2330 |
+
embeddings14 = embeddings_model.embed_documents(
|
2331 |
+
[doc.page_content for doc in splits14],
|
2332 |
+
# normalize_embeddings=True,
|
2333 |
+
# batch_size=256,
|
2334 |
+
# show_progress_bar=True
|
2335 |
+
)
|
2336 |
+
print(embeddings14)
|
2337 |
+
|
2338 |
+
|
2339 |
+
# In[201]:
|
2340 |
+
|
2341 |
+
|
2342 |
+
ids14 = [str(uuid.uuid4()) for _ in range(len(contents14))]
|
2343 |
+
|
2344 |
+
|
2345 |
+
# In[202]:
|
2346 |
+
|
2347 |
+
|
2348 |
+
data.add(
|
2349 |
+
documents=contents14,
|
2350 |
+
embeddings=embeddings14,
|
2351 |
+
metadatas=metadata14,
|
2352 |
+
ids=ids14
|
2353 |
+
)
|
2354 |
+
|
2355 |
+
|
2356 |
+
# In[203]:
|
2357 |
+
|
2358 |
+
|
2359 |
+
append_data(contents14, metadata14, embeddings14)
|
2360 |
+
|
2361 |
+
|
2362 |
+
# In[204]:
|
2363 |
+
|
2364 |
+
|
2365 |
+
df
|
2366 |
+
|
2367 |
+
|
2368 |
+
# # <p style="color: orange;"> Document 14 Departement Mathematique </p>
|
2369 |
+
|
2370 |
+
# In[206]:
|
2371 |
+
|
2372 |
+
|
2373 |
+
loader = WebBaseLoader(
|
2374 |
+
web_paths=("https://fsm.rnu.tn/fra/departements/M/1/mathematiques",),
|
2375 |
+
bs_kwargs=dict(
|
2376 |
+
parse_only=bs4.SoupStrainer(
|
2377 |
+
class_=("selectEnsFilter")
|
2378 |
+
)
|
2379 |
+
),
|
2380 |
+
)
|
2381 |
+
math = loader.load()
|
2382 |
+
|
2383 |
+
|
2384 |
+
# In[207]:
|
2385 |
+
|
2386 |
+
|
2387 |
+
math = [
|
2388 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
2389 |
+
for doc in math]
|
2390 |
+
math
|
2391 |
+
|
2392 |
+
|
2393 |
+
# ## splitting doc 14 into chunks
|
2394 |
+
|
2395 |
+
# In[209]:
|
2396 |
+
|
2397 |
+
|
2398 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
2399 |
+
splits15 = text_splitter.split_documents(math)
|
2400 |
+
|
2401 |
+
|
2402 |
+
# In[210]:
|
2403 |
+
|
2404 |
+
|
2405 |
+
splits15
|
2406 |
+
|
2407 |
+
|
2408 |
+
# In[211]:
|
2409 |
+
|
2410 |
+
|
2411 |
+
contents15= [doc.page_content for doc in splits15]
|
2412 |
+
metadata15 = [doc.metadata for doc in splits15]
|
2413 |
+
|
2414 |
+
|
2415 |
+
# In[212]:
|
2416 |
+
|
2417 |
+
|
2418 |
+
embeddings15 = embeddings_model.embed_documents(
|
2419 |
+
[doc.page_content for doc in splits15],
|
2420 |
+
# normalize_embeddings=True,
|
2421 |
+
# batch_size=256,
|
2422 |
+
# show_progress_bar=True
|
2423 |
+
)
|
2424 |
+
print(embeddings15)
|
2425 |
+
|
2426 |
+
|
2427 |
+
# In[213]:
|
2428 |
+
|
2429 |
+
|
2430 |
+
ids15 = [str(uuid.uuid4()) for _ in range(len(contents15))]
|
2431 |
+
|
2432 |
+
|
2433 |
+
# In[214]:
|
2434 |
+
|
2435 |
+
|
2436 |
+
data.add(
|
2437 |
+
documents=contents15,
|
2438 |
+
embeddings=embeddings15,
|
2439 |
+
metadatas=metadata15,
|
2440 |
+
ids=ids15
|
2441 |
+
)
|
2442 |
+
|
2443 |
+
|
2444 |
+
# In[215]:
|
2445 |
+
|
2446 |
+
|
2447 |
+
append_data(contents15, metadata15, embeddings15)
|
2448 |
+
|
2449 |
+
|
2450 |
+
# In[216]:
|
2451 |
+
|
2452 |
+
|
2453 |
+
df
|
2454 |
+
|
2455 |
+
|
2456 |
+
# # <p style="color: orange;"> Document 15 Departement informatique </p>
|
2457 |
+
|
2458 |
+
# In[218]:
|
2459 |
+
|
2460 |
+
|
2461 |
+
loader = WebBaseLoader(
|
2462 |
+
web_paths=("https://fsm.rnu.tn/fra/departements/Info/2/informatique",),
|
2463 |
+
bs_kwargs=dict(
|
2464 |
+
parse_only=bs4.SoupStrainer(
|
2465 |
+
class_=("selectEnsFilter")
|
2466 |
+
)
|
2467 |
+
),
|
2468 |
+
)
|
2469 |
+
info = loader.load()
|
2470 |
+
|
2471 |
+
|
2472 |
+
# In[219]:
|
2473 |
+
|
2474 |
+
|
2475 |
+
info = [
|
2476 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
2477 |
+
for doc in info]
|
2478 |
+
info
|
2479 |
+
|
2480 |
+
|
2481 |
+
# ## splitting doc 15 into chunks
|
2482 |
+
|
2483 |
+
# In[221]:
|
2484 |
+
|
2485 |
+
|
2486 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
2487 |
+
splits16=text_splitter.split_documents(info)
|
2488 |
+
|
2489 |
+
|
2490 |
+
# In[222]:
|
2491 |
+
|
2492 |
+
|
2493 |
+
splits16
|
2494 |
+
|
2495 |
+
|
2496 |
+
# In[223]:
|
2497 |
+
|
2498 |
+
|
2499 |
+
contents16= [doc.page_content for doc in splits16]
|
2500 |
+
metadata16 = [doc.metadata for doc in splits16]
|
2501 |
+
|
2502 |
+
|
2503 |
+
# In[224]:
|
2504 |
+
|
2505 |
+
|
2506 |
+
embeddings16 = embeddings_model.embed_documents(
|
2507 |
+
[doc.page_content for doc in splits16],
|
2508 |
+
# normalize_embeddings=True,
|
2509 |
+
# batch_size=256,
|
2510 |
+
# show_progress_bar=True
|
2511 |
+
)
|
2512 |
+
print(embeddings16)
|
2513 |
+
|
2514 |
+
|
2515 |
+
# In[225]:
|
2516 |
+
|
2517 |
+
|
2518 |
+
ids16 = [str(uuid.uuid4()) for _ in range(len(contents16))]
|
2519 |
+
|
2520 |
+
|
2521 |
+
# In[226]:
|
2522 |
+
|
2523 |
+
|
2524 |
+
data.add(
|
2525 |
+
documents=contents16,
|
2526 |
+
embeddings=embeddings16,
|
2527 |
+
metadatas=metadata16,
|
2528 |
+
ids=ids16
|
2529 |
+
)
|
2530 |
+
|
2531 |
+
|
2532 |
+
# In[227]:
|
2533 |
+
|
2534 |
+
|
2535 |
+
append_data(contents16, metadata16, embeddings16)
|
2536 |
+
|
2537 |
+
|
2538 |
+
# In[228]:
|
2539 |
+
|
2540 |
+
|
2541 |
+
df
|
2542 |
+
|
2543 |
+
|
2544 |
+
# # <p style="color: orange;">Document 16 departement Physique </p>
|
2545 |
+
|
2546 |
+
# # Document 16 Departement 16
|
2547 |
+
|
2548 |
+
# In[231]:
|
2549 |
+
|
2550 |
+
|
2551 |
+
loader = WebBaseLoader(
|
2552 |
+
web_paths=("https://fsm.rnu.tn/fra/departements/PH/3/physique",),
|
2553 |
+
bs_kwargs=dict(
|
2554 |
+
parse_only=bs4.SoupStrainer(
|
2555 |
+
class_=("selectEnsFilter")
|
2556 |
+
)
|
2557 |
+
),
|
2558 |
+
)
|
2559 |
+
physique = loader.load()
|
2560 |
+
|
2561 |
+
|
2562 |
+
# In[232]:
|
2563 |
+
|
2564 |
+
|
2565 |
+
physique = [
|
2566 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
2567 |
+
for doc in physique]
|
2568 |
+
physique
|
2569 |
+
|
2570 |
+
|
2571 |
+
# ## splitting doc 16 into chunks
|
2572 |
+
|
2573 |
+
# In[234]:
|
2574 |
+
|
2575 |
+
|
2576 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
2577 |
+
splits17 = text_splitter.split_documents(physique)
|
2578 |
+
|
2579 |
+
|
2580 |
+
# In[235]:
|
2581 |
+
|
2582 |
+
|
2583 |
+
splits17
|
2584 |
+
|
2585 |
+
|
2586 |
+
# In[236]:
|
2587 |
+
|
2588 |
+
|
2589 |
+
contents17= [doc.page_content for doc in splits17]
|
2590 |
+
metadata17 = [doc.metadata for doc in splits17]
|
2591 |
+
|
2592 |
+
|
2593 |
+
# In[237]:
|
2594 |
+
|
2595 |
+
|
2596 |
+
embeddings17 = embeddings_model.embed_documents(
|
2597 |
+
[doc.page_content for doc in splits17],
|
2598 |
+
# normalize_embeddings=True,
|
2599 |
+
# batch_size=256,
|
2600 |
+
# show_progress_bar=True
|
2601 |
+
)
|
2602 |
+
print(embeddings17)
|
2603 |
+
|
2604 |
+
|
2605 |
+
# In[238]:
|
2606 |
+
|
2607 |
+
|
2608 |
+
ids17 = [str(uuid.uuid4()) for _ in range(len(contents17))]
|
2609 |
+
|
2610 |
+
|
2611 |
+
# In[239]:
|
2612 |
+
|
2613 |
+
|
2614 |
+
data.add(
|
2615 |
+
documents=contents17,
|
2616 |
+
embeddings=embeddings17,
|
2617 |
+
metadatas=metadata17,
|
2618 |
+
ids=ids17
|
2619 |
+
)
|
2620 |
+
|
2621 |
+
|
2622 |
+
# In[240]:
|
2623 |
+
|
2624 |
+
|
2625 |
+
append_data(contents17, metadata17, embeddings17)
|
2626 |
+
|
2627 |
+
|
2628 |
+
# In[241]:
|
2629 |
+
|
2630 |
+
|
2631 |
+
df
|
2632 |
+
|
2633 |
+
|
2634 |
+
# # <p style="color: orange;">Document 17 Enseignement Tronc Commun </p>
|
2635 |
+
|
2636 |
+
# In[243]:
|
2637 |
+
|
2638 |
+
|
2639 |
+
loader = WebBaseLoader(
|
2640 |
+
web_paths=("https://fsm.rnu.tn/fra/departements/ET/5/enseignement-tronc-commun",),
|
2641 |
+
bs_kwargs=dict(
|
2642 |
+
parse_only=bs4.SoupStrainer(
|
2643 |
+
class_=("content")
|
2644 |
+
)
|
2645 |
+
),
|
2646 |
+
)
|
2647 |
+
Enseignement_Tronc_Commun = loader.load()
|
2648 |
+
|
2649 |
+
|
2650 |
+
# In[244]:
|
2651 |
+
|
2652 |
+
|
2653 |
+
Enseignement_Tronc_Commun = [
|
2654 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
2655 |
+
for doc in Enseignement_Tronc_Commun]
|
2656 |
+
Enseignement_Tronc_Commun
|
2657 |
+
|
2658 |
+
|
2659 |
+
# ## splitting doc 17 into chunks
|
2660 |
+
|
2661 |
+
# In[246]:
|
2662 |
+
|
2663 |
+
|
2664 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
2665 |
+
splits18 = text_splitter.split_documents(Enseignement_Tronc_Commun)
|
2666 |
+
|
2667 |
+
|
2668 |
+
# In[247]:
|
2669 |
+
|
2670 |
+
|
2671 |
+
splits18
|
2672 |
+
|
2673 |
+
|
2674 |
+
# In[248]:
|
2675 |
+
|
2676 |
+
|
2677 |
+
contents18= [doc.page_content for doc in splits18]
|
2678 |
+
metadata18 = [doc.metadata for doc in splits18]
|
2679 |
+
|
2680 |
+
|
2681 |
+
# In[249]:
|
2682 |
+
|
2683 |
+
|
2684 |
+
embeddings18 = embeddings_model.embed_documents(
|
2685 |
+
[doc.page_content for doc in splits18],
|
2686 |
+
# normalize_embeddings=True,
|
2687 |
+
# batch_size=256,
|
2688 |
+
# show_progress_bar=True
|
2689 |
+
)
|
2690 |
+
print(embeddings18)
|
2691 |
+
|
2692 |
+
|
2693 |
+
# In[250]:
|
2694 |
+
|
2695 |
+
|
2696 |
+
ids18 = [str(uuid.uuid4()) for _ in range(len(contents18))]
|
2697 |
+
|
2698 |
+
|
2699 |
+
# In[251]:
|
2700 |
+
|
2701 |
+
|
2702 |
+
data.add(
|
2703 |
+
documents=contents18,
|
2704 |
+
embeddings=embeddings18,
|
2705 |
+
metadatas=metadata18,
|
2706 |
+
ids=ids18
|
2707 |
+
)
|
2708 |
+
|
2709 |
+
|
2710 |
+
# In[252]:
|
2711 |
+
|
2712 |
+
|
2713 |
+
append_data(contents18, metadata18, embeddings18)
|
2714 |
+
|
2715 |
+
|
2716 |
+
# In[253]:
|
2717 |
+
|
2718 |
+
|
2719 |
+
df
|
2720 |
+
|
2721 |
+
|
2722 |
+
# # <p style="color: orange;">Document 18 اخر بلاغ للتسجيل بالنسبة للسنة الجامعية </p>
|
2723 |
+
#
|
2724 |
+
|
2725 |
+
# In[255]:
|
2726 |
+
|
2727 |
+
|
2728 |
+
loader = WebBaseLoader(
|
2729 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/4712/%D8%A7%D8%AE%D8%B1-%D8%A8%D9%84%D8%A7%D8%BA-%D9%84%D9%84%D8%AA%D8%B3%D8%AC%D9%8A%D9%84-%D8%A8%D8%A7%D9%84%D9%86%D8%B3%D8%A8%D8%A9-%D9%84%D9%84%D8%B3%D9%86%D8%A9-%D8%A7%D9%84%D8%AC%D8%A7%D9%85%D8%B9%D9%8A%D8%A9-2024-2025",),
|
2730 |
+
bs_kwargs=dict(
|
2731 |
+
parse_only=bs4.SoupStrainer(
|
2732 |
+
class_=("content")
|
2733 |
+
)
|
2734 |
+
),
|
2735 |
+
)
|
2736 |
+
ekher_balegh = loader.load()
|
2737 |
+
|
2738 |
+
|
2739 |
+
# In[256]:
|
2740 |
+
|
2741 |
+
|
2742 |
+
ekher_balegh = [
|
2743 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
2744 |
+
for doc in ekher_balegh]
|
2745 |
+
ekher_balegh
|
2746 |
+
|
2747 |
+
|
2748 |
+
# ## splitting doc 18 into chunks
|
2749 |
+
|
2750 |
+
# In[258]:
|
2751 |
+
|
2752 |
+
|
2753 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
2754 |
+
splits19 = text_splitter.split_documents(ekher_balegh)
|
2755 |
+
|
2756 |
+
|
2757 |
+
# In[259]:
|
2758 |
+
|
2759 |
+
|
2760 |
+
splits19
|
2761 |
+
|
2762 |
+
|
2763 |
+
# In[260]:
|
2764 |
+
|
2765 |
+
|
2766 |
+
contents19= [doc.page_content for doc in splits19]
|
2767 |
+
metadata19 = [doc.metadata for doc in splits19]
|
2768 |
+
|
2769 |
+
|
2770 |
+
# In[261]:
|
2771 |
+
|
2772 |
+
|
2773 |
+
embeddings19 = embeddings_model.embed_documents(
|
2774 |
+
[doc.page_content for doc in splits19],
|
2775 |
+
# normalize_embeddings=True,
|
2776 |
+
# batch_size=256,
|
2777 |
+
# show_progress_bar=True
|
2778 |
+
)
|
2779 |
+
print(embeddings19)
|
2780 |
+
|
2781 |
+
|
2782 |
+
# In[262]:
|
2783 |
+
|
2784 |
+
|
2785 |
+
ids19 = [str(uuid.uuid4()) for _ in range(len(contents19))]
|
2786 |
+
|
2787 |
+
|
2788 |
+
# In[263]:
|
2789 |
+
|
2790 |
+
|
2791 |
+
data.add(
|
2792 |
+
documents=contents19,
|
2793 |
+
embeddings=embeddings19,
|
2794 |
+
metadatas=metadata19,
|
2795 |
+
ids=ids19
|
2796 |
+
)
|
2797 |
+
|
2798 |
+
|
2799 |
+
# In[264]:
|
2800 |
+
|
2801 |
+
|
2802 |
+
append_data(contents19, metadata19, embeddings19)
|
2803 |
+
|
2804 |
+
|
2805 |
+
# In[265]:
|
2806 |
+
|
2807 |
+
|
2808 |
+
df
|
2809 |
+
|
2810 |
+
|
2811 |
+
# # <p style="color: orange;">Documents 19 Comptes extranet des étudiants 2024-2025 </p>
|
2812 |
+
#
|
2813 |
+
|
2814 |
+
# In[267]:
|
2815 |
+
|
2816 |
+
|
2817 |
+
loader = WebBaseLoader(
|
2818 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/4673/comptes-extranet-des-etudiants-2024-2025",),
|
2819 |
+
bs_kwargs=dict(
|
2820 |
+
parse_only=bs4.SoupStrainer(
|
2821 |
+
class_=("content")
|
2822 |
+
)
|
2823 |
+
),
|
2824 |
+
)
|
2825 |
+
comptes_extranet_des_etudiants = loader.load()
|
2826 |
+
|
2827 |
+
|
2828 |
+
# In[268]:
|
2829 |
+
|
2830 |
+
|
2831 |
+
comptes_extranet_des_etudiants = [
|
2832 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
2833 |
+
for doc in comptes_extranet_des_etudiants]
|
2834 |
+
comptes_extranet_des_etudiants
|
2835 |
+
|
2836 |
+
|
2837 |
+
|
2838 |
+
# ## splitting doc 19 into chunks
|
2839 |
+
|
2840 |
+
# In[270]:
|
2841 |
+
|
2842 |
+
|
2843 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
2844 |
+
splits20 = text_splitter.split_documents(comptes_extranet_des_etudiants)
|
2845 |
+
|
2846 |
+
|
2847 |
+
# In[271]:
|
2848 |
+
|
2849 |
+
|
2850 |
+
splits20
|
2851 |
+
|
2852 |
+
|
2853 |
+
# In[272]:
|
2854 |
+
|
2855 |
+
|
2856 |
+
contents20= [doc.page_content for doc in splits20]
|
2857 |
+
metadata20 = [doc.metadata for doc in splits20]
|
2858 |
+
|
2859 |
+
|
2860 |
+
# In[273]:
|
2861 |
+
|
2862 |
+
|
2863 |
+
embeddings20 = embeddings_model.embed_documents(
|
2864 |
+
[doc.page_content for doc in splits20],
|
2865 |
+
# normalize_embeddings=True,
|
2866 |
+
# batch_size=256,
|
2867 |
+
# show_progress_bar=True
|
2868 |
+
)
|
2869 |
+
print(embeddings20)
|
2870 |
+
|
2871 |
+
|
2872 |
+
# In[274]:
|
2873 |
+
|
2874 |
+
|
2875 |
+
ids20 = [str(uuid.uuid4()) for _ in range(len(contents20))]
|
2876 |
+
|
2877 |
+
|
2878 |
+
# In[275]:
|
2879 |
+
|
2880 |
+
|
2881 |
+
data.add(
|
2882 |
+
documents=contents20,
|
2883 |
+
embeddings=embeddings20,
|
2884 |
+
metadatas=metadata20,
|
2885 |
+
ids=ids20
|
2886 |
+
)
|
2887 |
+
|
2888 |
+
|
2889 |
+
# In[276]:
|
2890 |
+
|
2891 |
+
|
2892 |
+
append_data(contents20, metadata20, embeddings20)
|
2893 |
+
|
2894 |
+
|
2895 |
+
# In[277]:
|
2896 |
+
|
2897 |
+
|
2898 |
+
df
|
2899 |
+
|
2900 |
+
|
2901 |
+
# # <p style="color: orange;"> Document 20 بلاغ الترسيم للسنة الجامعية </p>
|
2902 |
+
#
|
2903 |
+
|
2904 |
+
# In[279]:
|
2905 |
+
|
2906 |
+
|
2907 |
+
loader = WebBaseLoader(
|
2908 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/4395/%D8%A8%D9%84%D8%A7%D8%BA-%D8%A7%D9%84%D8%AA%D8%B1%D8%B3%D9%8A%D9%85-%D9%84%D9%84%D8%B3%D9%86%D8%A9-%D8%A7%D9%84%D8%AC%D8%A7%D9%85%D8%B9%D9%8A%D8%A9-2024-2025",),
|
2909 |
+
bs_kwargs=dict(
|
2910 |
+
parse_only=bs4.SoupStrainer(
|
2911 |
+
class_=("content")
|
2912 |
+
)
|
2913 |
+
),
|
2914 |
+
)
|
2915 |
+
balegh_tarsim = loader.load()
|
2916 |
+
|
2917 |
+
|
2918 |
+
# In[280]:
|
2919 |
+
|
2920 |
+
|
2921 |
+
comptes_extranet_des_etudiants = [
|
2922 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
2923 |
+
for doc in balegh_tarsim]
|
2924 |
+
balegh_tarsim
|
2925 |
+
|
2926 |
+
|
2927 |
+
|
2928 |
+
# ## splitting doc 20 into chunks
|
2929 |
+
|
2930 |
+
# In[282]:
|
2931 |
+
|
2932 |
+
|
2933 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
2934 |
+
splits21 = text_splitter.split_documents(balegh_tarsim)
|
2935 |
+
|
2936 |
+
|
2937 |
+
# In[283]:
|
2938 |
+
|
2939 |
+
|
2940 |
+
splits21
|
2941 |
+
|
2942 |
+
|
2943 |
+
# In[284]:
|
2944 |
+
|
2945 |
+
|
2946 |
+
contents21= [doc.page_content for doc in splits21]
|
2947 |
+
metadata21= [doc.metadata for doc in splits21]
|
2948 |
+
|
2949 |
+
|
2950 |
+
# In[285]:
|
2951 |
+
|
2952 |
+
|
2953 |
+
embeddings21= embeddings_model.embed_documents(
|
2954 |
+
[doc.page_content for doc in splits21],
|
2955 |
+
# normalize_embeddings=True,
|
2956 |
+
# batch_size=256,
|
2957 |
+
# show_progress_bar=True
|
2958 |
+
)
|
2959 |
+
print(embeddings21)
|
2960 |
+
|
2961 |
+
|
2962 |
+
# In[286]:
|
2963 |
+
|
2964 |
+
|
2965 |
+
ids21 = [str(uuid.uuid4()) for _ in range(len(contents21))]
|
2966 |
+
|
2967 |
+
|
2968 |
+
# In[287]:
|
2969 |
+
|
2970 |
+
|
2971 |
+
data.add(
|
2972 |
+
documents=contents21,
|
2973 |
+
embeddings=embeddings21,
|
2974 |
+
metadatas=metadata21,
|
2975 |
+
ids=ids21
|
2976 |
+
)
|
2977 |
+
|
2978 |
+
|
2979 |
+
# In[288]:
|
2980 |
+
|
2981 |
+
|
2982 |
+
append_data(contents21, metadata21, embeddings21)
|
2983 |
+
|
2984 |
+
|
2985 |
+
# In[289]:
|
2986 |
+
|
2987 |
+
|
2988 |
+
df
|
2989 |
+
|
2990 |
+
|
2991 |
+
# # <p style="color: orange;">Document 21 Fiche de renseignements des diplômés </p>
|
2992 |
+
#
|
2993 |
+
|
2994 |
+
# In[291]:
|
2995 |
+
|
2996 |
+
|
2997 |
+
loader = WebBaseLoader(
|
2998 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/138/Fiche-de-renseignements-des-dipl%C3%B4m%C3%A9s",),
|
2999 |
+
bs_kwargs=dict(
|
3000 |
+
parse_only=bs4.SoupStrainer(
|
3001 |
+
class_=("content")
|
3002 |
+
)
|
3003 |
+
),
|
3004 |
+
)
|
3005 |
+
Fiche_de_renseignements_des_diplome = loader.load()
|
3006 |
+
|
3007 |
+
|
3008 |
+
# In[292]:
|
3009 |
+
|
3010 |
+
|
3011 |
+
Fiche_de_renseignements_des_diplome = [
|
3012 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
3013 |
+
for doc in Fiche_de_renseignements_des_diplome]
|
3014 |
+
Fiche_de_renseignements_des_diplome
|
3015 |
+
|
3016 |
+
|
3017 |
+
# ## splitting doc 21 into chunks
|
3018 |
+
|
3019 |
+
# In[294]:
|
3020 |
+
|
3021 |
+
|
3022 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
3023 |
+
splits22 = text_splitter.split_documents(Fiche_de_renseignements_des_diplome)
|
3024 |
+
|
3025 |
+
|
3026 |
+
# In[295]:
|
3027 |
+
|
3028 |
+
|
3029 |
+
splits22
|
3030 |
+
|
3031 |
+
|
3032 |
+
# In[296]:
|
3033 |
+
|
3034 |
+
|
3035 |
+
contents22= [doc.page_content for doc in splits22]
|
3036 |
+
metadata22 = [doc.metadata for doc in splits22]
|
3037 |
+
|
3038 |
+
|
3039 |
+
# In[297]:
|
3040 |
+
|
3041 |
+
|
3042 |
+
embeddings22 = embeddings_model.embed_documents(
|
3043 |
+
[doc.page_content for doc in splits22],
|
3044 |
+
# normalize_embeddings=True,
|
3045 |
+
# batch_size=256,
|
3046 |
+
# show_progress_bar=True
|
3047 |
+
)
|
3048 |
+
print(embeddings22)
|
3049 |
+
|
3050 |
+
|
3051 |
+
# In[298]:
|
3052 |
+
|
3053 |
+
|
3054 |
+
ids22 = [str(uuid.uuid4()) for _ in range(len(contents22))]
|
3055 |
+
|
3056 |
+
|
3057 |
+
# In[299]:
|
3058 |
+
|
3059 |
+
|
3060 |
+
data.add(
|
3061 |
+
documents=contents22,
|
3062 |
+
embeddings=embeddings22,
|
3063 |
+
metadatas=metadata22,
|
3064 |
+
ids=ids22
|
3065 |
+
)
|
3066 |
+
|
3067 |
+
|
3068 |
+
# In[300]:
|
3069 |
+
|
3070 |
+
|
3071 |
+
append_data(contents22, metadata22, embeddings22)
|
3072 |
+
|
3073 |
+
|
3074 |
+
# In[301]:
|
3075 |
+
|
3076 |
+
|
3077 |
+
df
|
3078 |
+
|
3079 |
+
|
3080 |
+
# # <p style="color: orange;">Document 22 Loi de creation FSM </p>
|
3081 |
+
#
|
3082 |
+
|
3083 |
+
# In[303]:
|
3084 |
+
|
3085 |
+
|
3086 |
+
loader = WebBaseLoader(
|
3087 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/1/Loi-de-cr%C3%A9ation",),
|
3088 |
+
bs_kwargs=dict(
|
3089 |
+
parse_only=bs4.SoupStrainer(
|
3090 |
+
class_=("content")
|
3091 |
+
)
|
3092 |
+
),
|
3093 |
+
)
|
3094 |
+
loi_de_creation = loader.load()
|
3095 |
+
|
3096 |
+
|
3097 |
+
# In[304]:
|
3098 |
+
|
3099 |
+
|
3100 |
+
loi_de_creation = [
|
3101 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
3102 |
+
for doc in loi_de_creation]
|
3103 |
+
loi_de_creation
|
3104 |
+
|
3105 |
+
|
3106 |
+
# ## splitting doc 22 into chunks
|
3107 |
+
|
3108 |
+
# In[306]:
|
3109 |
+
|
3110 |
+
|
3111 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
3112 |
+
splits23 = text_splitter.split_documents(loi_de_creation)
|
3113 |
+
|
3114 |
+
|
3115 |
+
# In[307]:
|
3116 |
+
|
3117 |
+
|
3118 |
+
splits23
|
3119 |
+
|
3120 |
+
|
3121 |
+
# In[308]:
|
3122 |
+
|
3123 |
+
|
3124 |
+
contents23= [doc.page_content for doc in splits23]
|
3125 |
+
metadata23 = [doc.metadata for doc in splits23]
|
3126 |
+
|
3127 |
+
|
3128 |
+
# In[309]:
|
3129 |
+
|
3130 |
+
|
3131 |
+
embeddings23 = embeddings_model.embed_documents(
|
3132 |
+
[doc.page_content for doc in splits23],
|
3133 |
+
# normalize_embeddings=True,
|
3134 |
+
# batch_size=256,
|
3135 |
+
# show_progress_bar=True
|
3136 |
+
)
|
3137 |
+
print(embeddings23)
|
3138 |
+
|
3139 |
+
|
3140 |
+
# In[310]:
|
3141 |
+
|
3142 |
+
|
3143 |
+
ids23 = [str(uuid.uuid4()) for _ in range(len(contents23))]
|
3144 |
+
|
3145 |
+
|
3146 |
+
# In[311]:
|
3147 |
+
|
3148 |
+
|
3149 |
+
data.add(
|
3150 |
+
documents=contents23,
|
3151 |
+
embeddings=embeddings23,
|
3152 |
+
metadatas=metadata23,
|
3153 |
+
ids=ids23
|
3154 |
+
)
|
3155 |
+
|
3156 |
+
|
3157 |
+
# In[312]:
|
3158 |
+
|
3159 |
+
|
3160 |
+
append_data(contents23, metadata23, embeddings23)
|
3161 |
+
|
3162 |
+
|
3163 |
+
# In[313]:
|
3164 |
+
|
3165 |
+
|
3166 |
+
df
|
3167 |
+
|
3168 |
+
|
3169 |
+
# # <p style="color: orange;">Document 23 loi en chiffre </p>
|
3170 |
+
#
|
3171 |
+
|
3172 |
+
# In[315]:
|
3173 |
+
|
3174 |
+
|
3175 |
+
loader = WebBaseLoader(
|
3176 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/3/En-chiffres",),
|
3177 |
+
bs_kwargs=dict(
|
3178 |
+
parse_only=bs4.SoupStrainer(
|
3179 |
+
class_=("content")
|
3180 |
+
)
|
3181 |
+
),
|
3182 |
+
)
|
3183 |
+
loi_en_chiffre = loader.load()
|
3184 |
+
|
3185 |
+
|
3186 |
+
# In[316]:
|
3187 |
+
|
3188 |
+
|
3189 |
+
loi_en_chiffre = [
|
3190 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
3191 |
+
for doc in loi_en_chiffre]
|
3192 |
+
loi_en_chiffre
|
3193 |
+
|
3194 |
+
|
3195 |
+
# ## splitting doc 23 into chunks
|
3196 |
+
|
3197 |
+
# In[318]:
|
3198 |
+
|
3199 |
+
|
3200 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
3201 |
+
splits24 = text_splitter.split_documents(loi_en_chiffre)
|
3202 |
+
|
3203 |
+
|
3204 |
+
# In[319]:
|
3205 |
+
|
3206 |
+
|
3207 |
+
splits24
|
3208 |
+
|
3209 |
+
|
3210 |
+
# In[320]:
|
3211 |
+
|
3212 |
+
|
3213 |
+
contents24= [doc.page_content for doc in splits24]
|
3214 |
+
metadata24 = [doc.metadata for doc in splits24]
|
3215 |
+
|
3216 |
+
|
3217 |
+
# In[321]:
|
3218 |
+
|
3219 |
+
|
3220 |
+
embeddings24 = embeddings_model.embed_documents(
|
3221 |
+
[doc.page_content for doc in splits24],
|
3222 |
+
# normalize_embeddings=True,
|
3223 |
+
# batch_size=256,
|
3224 |
+
# show_progress_bar=True
|
3225 |
+
)
|
3226 |
+
print(embeddings24)
|
3227 |
+
|
3228 |
+
|
3229 |
+
# In[322]:
|
3230 |
+
|
3231 |
+
|
3232 |
+
ids24 = [str(uuid.uuid4()) for _ in range(len(contents24))]
|
3233 |
+
|
3234 |
+
|
3235 |
+
# In[323]:
|
3236 |
+
|
3237 |
+
|
3238 |
+
data.add(
|
3239 |
+
documents=contents24,
|
3240 |
+
embeddings=embeddings24,
|
3241 |
+
metadatas=metadata24,
|
3242 |
+
ids=ids24
|
3243 |
+
)
|
3244 |
+
|
3245 |
+
|
3246 |
+
# In[324]:
|
3247 |
+
|
3248 |
+
|
3249 |
+
append_data(contents24, metadata24, embeddings24)
|
3250 |
+
|
3251 |
+
|
3252 |
+
# In[325]:
|
3253 |
+
|
3254 |
+
|
3255 |
+
df
|
3256 |
+
|
3257 |
+
|
3258 |
+
# # LICENCE
|
3259 |
+
|
3260 |
+
# # <p style="color: orange;">Document 24 PARCOURS LMD Mathématiques Appliquées</p>
|
3261 |
+
#
|
3262 |
+
|
3263 |
+
# In[328]:
|
3264 |
+
|
3265 |
+
|
3266 |
+
loader = WebBaseLoader(
|
3267 |
+
web_paths=("http://www.parcours-lmd.salima.tn/listeueetab.php?parc=ABhRHFxzAmNUZVIoBj4ENQYgX2sBPA==&etab=VjJQYQk7",),
|
3268 |
+
bs_kwargs=dict(
|
3269 |
+
parse_only=bs4.SoupStrainer(
|
3270 |
+
class_=("center")
|
3271 |
+
)
|
3272 |
+
),
|
3273 |
+
)
|
3274 |
+
parcours_math_appli = loader.load()
|
3275 |
+
|
3276 |
+
|
3277 |
+
# In[329]:
|
3278 |
+
|
3279 |
+
|
3280 |
+
parcours_math_appli = [
|
3281 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
3282 |
+
for doc in parcours_math_appli]
|
3283 |
+
parcours_math_appli
|
3284 |
+
|
3285 |
+
|
3286 |
+
# ## splitting doc 24 into chunks
|
3287 |
+
|
3288 |
+
# In[331]:
|
3289 |
+
|
3290 |
+
|
3291 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
3292 |
+
splits25 = text_splitter.split_documents(parcours_math_appli)
|
3293 |
+
|
3294 |
+
|
3295 |
+
# In[332]:
|
3296 |
+
|
3297 |
+
|
3298 |
+
splits25
|
3299 |
+
|
3300 |
+
|
3301 |
+
# In[333]:
|
3302 |
+
|
3303 |
+
|
3304 |
+
contents25= [doc.page_content for doc in splits25]
|
3305 |
+
metadata25 = [doc.metadata for doc in splits25]
|
3306 |
+
|
3307 |
+
|
3308 |
+
# In[334]:
|
3309 |
+
|
3310 |
+
|
3311 |
+
embeddings25 = embeddings_model.embed_documents(
|
3312 |
+
[doc.page_content for doc in splits25],
|
3313 |
+
# normalize_embeddings=True,
|
3314 |
+
# batch_size=256,
|
3315 |
+
# show_progress_bar=True
|
3316 |
+
)
|
3317 |
+
print(embeddings25)
|
3318 |
+
|
3319 |
+
|
3320 |
+
# In[335]:
|
3321 |
+
|
3322 |
+
|
3323 |
+
ids25 = [str(uuid.uuid4()) for _ in range(len(contents25))]
|
3324 |
+
|
3325 |
+
|
3326 |
+
# In[336]:
|
3327 |
+
|
3328 |
+
|
3329 |
+
data.add(
|
3330 |
+
documents=contents25,
|
3331 |
+
embeddings=embeddings25,
|
3332 |
+
metadatas=metadata25,
|
3333 |
+
ids=ids25
|
3334 |
+
)
|
3335 |
+
|
3336 |
+
|
3337 |
+
# In[337]:
|
3338 |
+
|
3339 |
+
|
3340 |
+
append_data(contents25, metadata25, embeddings25)
|
3341 |
+
|
3342 |
+
|
3343 |
+
# In[338]:
|
3344 |
+
|
3345 |
+
|
3346 |
+
df
|
3347 |
+
|
3348 |
+
|
3349 |
+
# # <p style="color: orange;"> Document 25 parcours lmd Computer Science</p>
|
3350 |
+
#
|
3351 |
+
|
3352 |
+
# In[340]:
|
3353 |
+
|
3354 |
+
|
3355 |
+
loader = WebBaseLoader(
|
3356 |
+
web_paths=("http://www.parcours-lmd.salima.tn/listeueetab.php?parc=UkpTHlxzUzJXZlctDjJTYFZwDDI=&etab=VjJZaAg6",),
|
3357 |
+
bs_kwargs=dict(
|
3358 |
+
parse_only=bs4.SoupStrainer(
|
3359 |
+
class_=("center")
|
3360 |
+
)
|
3361 |
+
),
|
3362 |
+
)
|
3363 |
+
parcours_computer_science = loader.load()
|
3364 |
+
|
3365 |
+
|
3366 |
+
# In[341]:
|
3367 |
+
|
3368 |
+
|
3369 |
+
parcours_computer_science = [
|
3370 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
3371 |
+
for doc in parcours_computer_science]
|
3372 |
+
parcours_computer_science
|
3373 |
+
|
3374 |
+
|
3375 |
+
# ## splitting doc 25 into chunks
|
3376 |
+
|
3377 |
+
# In[343]:
|
3378 |
+
|
3379 |
+
|
3380 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
3381 |
+
splits26 = text_splitter.split_documents(parcours_computer_science)
|
3382 |
+
|
3383 |
+
|
3384 |
+
# In[344]:
|
3385 |
+
|
3386 |
+
|
3387 |
+
splits26
|
3388 |
+
|
3389 |
+
|
3390 |
+
# In[345]:
|
3391 |
+
|
3392 |
+
|
3393 |
+
contents26= [doc.page_content for doc in splits26]
|
3394 |
+
metadata26= [doc.metadata for doc in splits26]
|
3395 |
+
|
3396 |
+
|
3397 |
+
# In[346]:
|
3398 |
+
|
3399 |
+
|
3400 |
+
embeddings26 = embeddings_model.embed_documents(
|
3401 |
+
[doc.page_content for doc in splits26],
|
3402 |
+
# normalize_embeddings=True,
|
3403 |
+
# batch_size=256,
|
3404 |
+
# show_progress_bar=True
|
3405 |
+
)
|
3406 |
+
print(embeddings26)
|
3407 |
+
|
3408 |
+
|
3409 |
+
# In[347]:
|
3410 |
+
|
3411 |
+
|
3412 |
+
ids26 = [str(uuid.uuid4()) for _ in range(len(contents26))]
|
3413 |
+
|
3414 |
+
|
3415 |
+
# In[348]:
|
3416 |
+
|
3417 |
+
|
3418 |
+
data.add(
|
3419 |
+
documents=contents26,
|
3420 |
+
embeddings=embeddings26,
|
3421 |
+
metadatas=metadata26,
|
3422 |
+
ids=ids26
|
3423 |
+
)
|
3424 |
+
|
3425 |
+
|
3426 |
+
# In[349]:
|
3427 |
+
|
3428 |
+
|
3429 |
+
append_data(contents26, metadata26, embeddings26)
|
3430 |
+
|
3431 |
+
|
3432 |
+
# In[350]:
|
3433 |
+
|
3434 |
+
|
3435 |
+
df
|
3436 |
+
|
3437 |
+
|
3438 |
+
# # <p style="color: orange;"> Document 26 Parcours LMD Mesures et Instrumentation</p>
|
3439 |
+
#
|
3440 |
+
|
3441 |
+
# In[352]:
|
3442 |
+
|
3443 |
+
|
3444 |
+
loader = WebBaseLoader(
|
3445 |
+
web_paths=("http://www.parcours-lmd.salima.tn/listeueetab.php?parc=W0NXGlp1UjNWZwN5BzkHMVN1DzsBPA==&etab=BGBYaQw+",),
|
3446 |
+
bs_kwargs=dict(
|
3447 |
+
parse_only=bs4.SoupStrainer(
|
3448 |
+
class_=("center")
|
3449 |
+
)
|
3450 |
+
),
|
3451 |
+
)
|
3452 |
+
parcours_Mesures = loader.load()
|
3453 |
+
|
3454 |
+
|
3455 |
+
# In[353]:
|
3456 |
+
|
3457 |
+
|
3458 |
+
parcours_Mesures = [
|
3459 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
3460 |
+
for doc in parcours_Mesures]
|
3461 |
+
parcours_Mesures
|
3462 |
+
|
3463 |
+
|
3464 |
+
# ## spitting doc 26 inti chunks
|
3465 |
+
|
3466 |
+
# In[355]:
|
3467 |
+
|
3468 |
+
|
3469 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
3470 |
+
splits27 = text_splitter.split_documents(parcours_Mesures)
|
3471 |
+
|
3472 |
+
|
3473 |
+
# In[356]:
|
3474 |
+
|
3475 |
+
|
3476 |
+
splits27
|
3477 |
+
|
3478 |
+
|
3479 |
+
# In[357]:
|
3480 |
+
|
3481 |
+
|
3482 |
+
contents27= [doc.page_content for doc in splits27]
|
3483 |
+
metadata27= [doc.metadata for doc in splits27]
|
3484 |
+
|
3485 |
+
|
3486 |
+
# In[358]:
|
3487 |
+
|
3488 |
+
|
3489 |
+
embeddings27 = embeddings_model.embed_documents(
|
3490 |
+
[doc.page_content for doc in splits27],
|
3491 |
+
# normalize_embeddings=True,
|
3492 |
+
# batch_size=256,
|
3493 |
+
# show_progress_bar=True
|
3494 |
+
)
|
3495 |
+
print(embeddings27)
|
3496 |
+
|
3497 |
+
|
3498 |
+
# In[359]:
|
3499 |
+
|
3500 |
+
|
3501 |
+
ids27 = [str(uuid.uuid4()) for _ in range(len(contents27))]
|
3502 |
+
|
3503 |
+
|
3504 |
+
# In[360]:
|
3505 |
+
|
3506 |
+
|
3507 |
+
data.add(
|
3508 |
+
documents=contents27,
|
3509 |
+
embeddings=embeddings27,
|
3510 |
+
metadatas=metadata27,
|
3511 |
+
ids=ids27
|
3512 |
+
)
|
3513 |
+
|
3514 |
+
|
3515 |
+
# In[361]:
|
3516 |
+
|
3517 |
+
|
3518 |
+
append_data(contents27, metadata27, embeddings27)
|
3519 |
+
|
3520 |
+
|
3521 |
+
# In[362]:
|
3522 |
+
|
3523 |
+
|
3524 |
+
df
|
3525 |
+
|
3526 |
+
|
3527 |
+
# # <p style="color: orange;">Document 27 Parcours LMD Physique </p>
|
3528 |
+
#
|
3529 |
+
|
3530 |
+
# In[364]:
|
3531 |
|
|
|
3532 |
|
3533 |
+
loader = WebBaseLoader(
|
3534 |
+
web_paths=("http://www.parcours-lmd.salima.tn/listeueetab.php?parc=W0NZFFp1UjNcbVshDjAENlJ0X2tTbg==&etab=AWUDMl9t",),
|
3535 |
+
bs_kwargs=dict(
|
3536 |
+
parse_only=bs4.SoupStrainer(
|
3537 |
+
class_=("center")
|
3538 |
+
)
|
3539 |
+
),
|
3540 |
+
)
|
3541 |
+
parcours_physique = loader.load()
|
3542 |
+
|
3543 |
+
|
3544 |
+
# In[365]:
|
3545 |
+
|
3546 |
+
|
3547 |
+
parcours_physique = [
|
3548 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
3549 |
+
for doc in parcours_physique]
|
3550 |
+
parcours_physique
|
3551 |
+
|
3552 |
+
|
3553 |
+
# ## splitting doc 27 into chunks
|
3554 |
+
|
3555 |
+
# In[367]:
|
3556 |
+
|
3557 |
+
|
3558 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
3559 |
+
splits28 = text_splitter.split_documents(parcours_physique)
|
3560 |
+
|
3561 |
+
|
3562 |
+
# In[368]:
|
3563 |
+
|
3564 |
+
|
3565 |
+
splits28
|
3566 |
+
|
3567 |
+
|
3568 |
+
# In[369]:
|
3569 |
+
|
3570 |
+
|
3571 |
+
contents28= [doc.page_content for doc in splits28]
|
3572 |
+
metadata28= [doc.metadata for doc in splits28]
|
3573 |
+
|
3574 |
+
|
3575 |
+
# In[370]:
|
3576 |
+
|
3577 |
+
|
3578 |
+
embeddings28 = embeddings_model.embed_documents(
|
3579 |
+
[doc.page_content for doc in splits28],
|
3580 |
+
# normalize_embeddings=True,
|
3581 |
+
# batch_size=256,
|
3582 |
+
# show_progress_bar=True
|
3583 |
+
)
|
3584 |
+
print(embeddings28)
|
3585 |
+
|
3586 |
+
|
3587 |
+
# In[371]:
|
3588 |
+
|
3589 |
+
|
3590 |
+
ids28 = [str(uuid.uuid4()) for _ in range(len(contents28))]
|
3591 |
+
|
3592 |
+
|
3593 |
+
# In[372]:
|
3594 |
+
|
3595 |
+
|
3596 |
+
data.add(
|
3597 |
+
documents=contents28,
|
3598 |
+
embeddings=embeddings28,
|
3599 |
+
metadatas=metadata28,
|
3600 |
+
ids=ids28
|
3601 |
+
)
|
3602 |
+
|
3603 |
+
|
3604 |
+
# In[373]:
|
3605 |
+
|
3606 |
+
|
3607 |
+
append_data(contents28, metadata28, embeddings28)
|
3608 |
+
|
3609 |
+
|
3610 |
+
# In[374]:
|
3611 |
+
|
3612 |
+
|
3613 |
+
df
|
3614 |
+
|
3615 |
+
|
3616 |
+
# # <p style="color: orange;">Document 28 Parcours LMD chimie </p>
|
3617 |
+
#
|
3618 |
+
|
3619 |
+
# In[376]:
|
3620 |
+
|
3621 |
+
|
3622 |
+
loader = WebBaseLoader(
|
3623 |
+
web_paths=("http://www.parcours-lmd.salima.tn/listeueetab.php?parc=W0NYFV9wVDVcbQF7BzkKPQQiCz8HOg==&etab=B2NUZQAy",),
|
3624 |
+
bs_kwargs=dict(
|
3625 |
+
parse_only=bs4.SoupStrainer(
|
3626 |
+
class_=("center")
|
3627 |
+
)
|
3628 |
+
),
|
3629 |
+
)
|
3630 |
+
parcours_chimie = loader.load()
|
3631 |
+
|
3632 |
+
|
3633 |
+
# In[377]:
|
3634 |
+
|
3635 |
+
|
3636 |
+
parcours_chimie = [
|
3637 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
3638 |
+
for doc in parcours_chimie]
|
3639 |
+
parcours_chimie
|
3640 |
+
|
3641 |
+
|
3642 |
+
# ## splitting doc 28 into chunks
|
3643 |
+
|
3644 |
+
# In[379]:
|
3645 |
+
|
3646 |
+
|
3647 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
3648 |
+
splits29= text_splitter.split_documents(parcours_chimie)
|
3649 |
+
|
3650 |
+
|
3651 |
+
# In[380]:
|
3652 |
+
|
3653 |
+
|
3654 |
+
splits29
|
3655 |
+
|
3656 |
+
|
3657 |
+
# In[381]:
|
3658 |
+
|
3659 |
+
|
3660 |
+
contents29= [doc.page_content for doc in splits29]
|
3661 |
+
metadata29= [doc.metadata for doc in splits29]
|
3662 |
+
|
3663 |
+
|
3664 |
+
# In[382]:
|
3665 |
+
|
3666 |
+
|
3667 |
+
embeddings29 = embeddings_model.embed_documents(
|
3668 |
+
[doc.page_content for doc in splits29],
|
3669 |
+
# normalize_embeddings=True,
|
3670 |
+
# batch_size=256,
|
3671 |
+
# show_progress_bar=True
|
3672 |
+
)
|
3673 |
+
print(embeddings29)
|
3674 |
+
|
3675 |
+
|
3676 |
+
# In[383]:
|
3677 |
+
|
3678 |
+
|
3679 |
+
ids29 = [str(uuid.uuid4()) for _ in range(len(contents29))]
|
3680 |
+
|
3681 |
+
|
3682 |
+
# In[384]:
|
3683 |
+
|
3684 |
+
|
3685 |
+
data.add(
|
3686 |
+
documents=contents29,
|
3687 |
+
embeddings=embeddings29,
|
3688 |
+
metadatas=metadata29,
|
3689 |
+
ids=ids29
|
3690 |
+
)
|
3691 |
+
|
3692 |
+
|
3693 |
+
# In[385]:
|
3694 |
+
|
3695 |
+
|
3696 |
+
append_data(contents29, metadata29, embeddings29)
|
3697 |
+
|
3698 |
+
|
3699 |
+
# In[386]:
|
3700 |
+
|
3701 |
+
|
3702 |
+
df
|
3703 |
+
|
3704 |
+
|
3705 |
+
# # <p style="color: orange;"> Document 29 Parcours LMD Physique-Chimie</p>
|
3706 |
+
#
|
3707 |
+
|
3708 |
+
# In[388]:
|
3709 |
+
|
3710 |
+
|
3711 |
+
loader = WebBaseLoader(
|
3712 |
+
web_paths=("http://www.parcours-lmd.salima.tn/listeueetab.php?parc=Bh4HSlh3VTQGN1ctVWsAMVJ0DjA=&etab=VjJZaA0/",),
|
3713 |
+
bs_kwargs=dict(
|
3714 |
+
parse_only=bs4.SoupStrainer(
|
3715 |
+
class_=("center")
|
3716 |
+
)
|
3717 |
+
),
|
3718 |
+
)
|
3719 |
+
parcours_physique_chimie = loader.load()
|
3720 |
+
|
3721 |
+
|
3722 |
+
# In[389]:
|
3723 |
+
|
3724 |
+
|
3725 |
+
parcours_physique_chimie = [
|
3726 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
3727 |
+
for doc in parcours_physique_chimie]
|
3728 |
+
parcours_physique_chimie
|
3729 |
+
|
3730 |
+
|
3731 |
+
# ## splitting doc 29 into chunks
|
3732 |
+
|
3733 |
+
# In[391]:
|
3734 |
+
|
3735 |
+
|
3736 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
3737 |
+
splits30= text_splitter.split_documents(parcours_physique_chimie)
|
3738 |
+
|
3739 |
+
|
3740 |
+
# In[392]:
|
3741 |
+
|
3742 |
+
|
3743 |
+
splits30
|
3744 |
+
|
3745 |
+
|
3746 |
+
# In[393]:
|
3747 |
+
|
3748 |
+
|
3749 |
+
contents30= [doc.page_content for doc in splits30]
|
3750 |
+
metadata30= [doc.metadata for doc in splits30]
|
3751 |
+
|
3752 |
+
|
3753 |
+
# In[394]:
|
3754 |
+
|
3755 |
+
|
3756 |
+
embeddings30 = embeddings_model.embed_documents(
|
3757 |
+
[doc.page_content for doc in splits30],
|
3758 |
+
# normalize_embeddings=True,
|
3759 |
+
# batch_size=256,
|
3760 |
+
# show_progress_bar=True
|
3761 |
+
)
|
3762 |
+
print(embeddings30)
|
3763 |
+
|
3764 |
+
|
3765 |
+
# In[395]:
|
3766 |
+
|
3767 |
+
|
3768 |
+
ids30 = [str(uuid.uuid4()) for _ in range(len(contents30))]
|
3769 |
+
|
3770 |
+
|
3771 |
+
# In[396]:
|
3772 |
+
|
3773 |
+
|
3774 |
+
data.add(
|
3775 |
+
documents=contents30,
|
3776 |
+
embeddings=embeddings30,
|
3777 |
+
metadatas=metadata30,
|
3778 |
+
ids=ids30
|
3779 |
+
)
|
3780 |
+
|
3781 |
|
3782 |
+
# In[397]:
|
3783 |
+
|
3784 |
+
|
3785 |
+
append_data(contents30, metadata30, embeddings30)
|
3786 |
+
|
3787 |
+
|
3788 |
+
|
3789 |
+
|
3790 |
+
|
3791 |
+
df
|
3792 |
+
|
3793 |
+
|
3794 |
+
|
3795 |
+
|
3796 |
+
loader = WebBaseLoader(
|
3797 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/1249/demande-de-diplomes",),
|
3798 |
+
bs_kwargs=dict(
|
3799 |
+
parse_only=bs4.SoupStrainer(
|
3800 |
+
class_=("content")
|
3801 |
+
)
|
3802 |
+
),
|
3803 |
+
)
|
3804 |
+
doc_demande_de_diplome = loader.load()
|
3805 |
+
|
3806 |
+
|
3807 |
+
# In[401]:
|
3808 |
+
|
3809 |
+
|
3810 |
+
doc_demande_de_diplome = [
|
3811 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
3812 |
+
for doc in doc_demande_de_diplome]
|
3813 |
+
doc_demande_de_diplome
|
3814 |
+
|
3815 |
+
|
3816 |
+
# ## splitting doc 30 into chunks
|
3817 |
+
|
3818 |
+
# In[403]:
|
3819 |
+
|
3820 |
+
|
3821 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
3822 |
+
splits31 = text_splitter.split_documents(doc_demande_de_diplome)
|
3823 |
+
|
3824 |
+
|
3825 |
+
# In[404]:
|
3826 |
+
|
3827 |
+
|
3828 |
+
splits31
|
3829 |
+
|
3830 |
+
|
3831 |
+
# In[405]:
|
3832 |
+
|
3833 |
+
|
3834 |
+
contents31= [doc.page_content for doc in splits31]
|
3835 |
+
metadata31= [doc.metadata for doc in splits31]
|
3836 |
+
|
3837 |
+
|
3838 |
+
# In[406]:
|
3839 |
+
|
3840 |
+
|
3841 |
+
embeddings31 = embeddings_model.embed_documents(
|
3842 |
+
[doc.page_content for doc in splits31],
|
3843 |
+
# normalize_embeddings=True,
|
3844 |
+
# batch_size=256,
|
3845 |
+
# show_progress_bar=True
|
3846 |
+
)
|
3847 |
+
print(embeddings31)
|
3848 |
+
|
3849 |
+
|
3850 |
+
# In[407]:
|
3851 |
+
|
3852 |
+
|
3853 |
+
ids31 = [str(uuid.uuid4()) for _ in range(len(contents31))]
|
3854 |
+
|
3855 |
+
|
3856 |
+
# In[408]:
|
3857 |
+
|
3858 |
+
|
3859 |
+
data.add(
|
3860 |
+
documents=contents31,
|
3861 |
+
embeddings=embeddings31,
|
3862 |
+
metadatas=metadata31,
|
3863 |
+
ids=ids31
|
3864 |
+
)
|
3865 |
+
|
3866 |
+
|
3867 |
+
# In[409]:
|
3868 |
+
|
3869 |
+
|
3870 |
+
append_data(contents31, metadata31, embeddings31)
|
3871 |
+
|
3872 |
+
|
3873 |
+
# In[410]:
|
3874 |
+
|
3875 |
+
|
3876 |
+
df
|
3877 |
+
|
3878 |
+
|
3879 |
+
# # <p style="color: orange;">Document 31 INFORMATION sur master rechereche mathematique </p>
|
3880 |
+
#
|
3881 |
+
|
3882 |
+
# In[412]:
|
3883 |
+
|
3884 |
+
|
3885 |
+
loader = WebBaseLoader(
|
3886 |
+
web_paths=("https://um.rnu.tn/fr/formations/formation-lmd/master/mat%C3%A8re-de-recherche-en-math%C3%A9matiques-fsm/",),
|
3887 |
+
bs_kwargs=dict(
|
3888 |
+
parse_only=bs4.SoupStrainer(
|
3889 |
+
class_=("single-post-content single-content")
|
3890 |
+
)
|
3891 |
+
),
|
3892 |
+
)
|
3893 |
+
info_supp_mastere_math = loader.load()
|
3894 |
+
|
3895 |
+
|
3896 |
+
# In[413]:
|
3897 |
+
|
3898 |
+
|
3899 |
+
info_supp_mastere_math = [
|
3900 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
3901 |
+
for doc in info_supp_mastere_math]
|
3902 |
+
info_supp_mastere_math
|
3903 |
+
|
3904 |
+
|
3905 |
+
# ## spitting doc 31 into chunks
|
3906 |
+
|
3907 |
+
# In[415]:
|
3908 |
+
|
3909 |
+
|
3910 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
3911 |
+
splits32 = text_splitter.split_documents(info_supp_mastere_math)
|
3912 |
+
|
3913 |
+
|
3914 |
+
# In[416]:
|
3915 |
+
|
3916 |
+
|
3917 |
+
splits32
|
3918 |
+
|
3919 |
+
|
3920 |
+
# In[417]:
|
3921 |
+
|
3922 |
+
|
3923 |
+
contents32= [doc.page_content for doc in splits32]
|
3924 |
+
metadata32 = [doc.metadata for doc in splits32]
|
3925 |
+
|
3926 |
+
|
3927 |
+
# In[418]:
|
3928 |
+
|
3929 |
+
|
3930 |
+
embeddings32 = embeddings_model.embed_documents(
|
3931 |
+
[doc.page_content for doc in splits32],
|
3932 |
+
# normalize_embeddings=True,
|
3933 |
+
# batch_size=256,
|
3934 |
+
# show_progress_bar=True
|
3935 |
+
)
|
3936 |
+
print(embeddings32)
|
3937 |
+
|
3938 |
+
|
3939 |
+
# In[419]:
|
3940 |
+
|
3941 |
+
|
3942 |
+
ids32 = [str(uuid.uuid4()) for _ in range(len(contents32))]
|
3943 |
+
|
3944 |
+
|
3945 |
+
# In[420]:
|
3946 |
+
|
3947 |
+
|
3948 |
+
data.add(
|
3949 |
+
documents=contents32,
|
3950 |
+
embeddings=embeddings32,
|
3951 |
+
metadatas=metadata32,
|
3952 |
+
ids=ids32
|
3953 |
+
)
|
3954 |
+
|
3955 |
+
|
3956 |
+
# In[421]:
|
3957 |
+
|
3958 |
+
|
3959 |
+
append_data(contents32, metadata32, embeddings32)
|
3960 |
+
|
3961 |
+
|
3962 |
+
|
3963 |
+
data = data.get(include=['embeddings'])
|
3964 |
+
print(data)
|
3965 |
+
|
3966 |
+
|
3967 |
+
# In[427]:
|
3968 |
+
|
3969 |
+
|
3970 |
+
if 'embeddings' in data:
|
3971 |
+
embeddings_array = np.array(data['embeddings'])
|
3972 |
+
print("Embeddings shape:", embeddings_array.shape)
|
3973 |
+
else:
|
3974 |
+
print("No embeddings found in vectorstore.")
|
3975 |
+
|
3976 |
+
|
3977 |
+
# In[428]:
|
3978 |
+
|
3979 |
+
|
3980 |
+
if embeddings_array.size > 0:
|
3981 |
+
pca = PCA(n_components=2)
|
3982 |
+
embeddings_2d = pca.fit_transform(embeddings_array)
|
3983 |
+
|
3984 |
+
# Plot embeddings
|
3985 |
+
plt.figure(figsize=(8, 6))
|
3986 |
+
plt.scatter(embeddings_2d[:, 0], embeddings_2d[:, 1], alpha=0.7)
|
3987 |
+
plt.xlabel("PCA 1")
|
3988 |
+
plt.ylabel("PCA 2")
|
3989 |
+
plt.title("2D Visualization of Embeddings")
|
3990 |
+
plt.show()
|
3991 |
+
else:
|
3992 |
+
print("No embeddings available for PCA visualization.")
|
3993 |
+
|
3994 |
+
|
3995 |
+
# # Manully testing to retrive 2st attempt just checking 👌
|
3996 |
+
|
3997 |
+
# In[430]:
|
3998 |
+
|
3999 |
+
|
4000 |
+
data = chroma_client.get_collection(name="my_dataaaa")
|
4001 |
+
|
4002 |
+
|
4003 |
+
# In[431]:
|
4004 |
+
|
4005 |
+
|
4006 |
+
query_embedding = embeddings_model.embed_query("Quelles sont les documents de stage obligatoire?")
|
4007 |
+
|
4008 |
+
results = data.query(
|
4009 |
+
query_embeddings=[query_embedding],
|
4010 |
+
n_results=50
|
4011 |
+
)
|
4012 |
+
|
4013 |
+
|
4014 |
+
# In[432]:
|
4015 |
+
|
4016 |
+
|
4017 |
+
results
|
4018 |
+
|
4019 |
+
|
4020 |
+
# In[783]:
|
4021 |
+
|
4022 |
+
|
4023 |
+
chroma_client = chromadb.PersistentClient(path="chroma_db")
|
4024 |
+
collections = chroma_client.list_collections()
|
4025 |
+
print("Available collections:", collections)
|
4026 |
+
if "my_dataaaa" in collections:
|
4027 |
+
collection = chroma_client.get_collection(name="my_dataaaa")
|
4028 |
+
print(" Successfully loaded collection:", collection)
|
4029 |
+
else:
|
4030 |
+
print("Collection 'my_dataaaa' does not exist.", collections)
|
4031 |
embeddings_model = HuggingFaceEmbeddings(model_name="HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5")
|
4032 |
|
4033 |
model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-large-mnli")
|
|
|
4039 |
result = classifier(text, candidate_labels=["question", "greeting", "small talk", "feedback", "thanks"])
|
4040 |
label = result["labels"][0]
|
4041 |
return label.lower()
|
4042 |
+
|
4043 |
+
chroma_db_path = "./chroma_db"
|
|
|
|
|
|
|
|
|
4044 |
chroma_client = chromadb.PersistentClient(path=chroma_db_path)
|
4045 |
|
4046 |
data = chroma_client.get_collection(name="my_dataaaa")
|
4047 |
vectorstore = Chroma(
|
4048 |
collection_name="my_dataaaa",
|
4049 |
+
persist_directory="./chroma_db",
|
4050 |
embedding_function=embeddings_model
|
4051 |
)
|
4052 |
|
|
|
4087 |
def format_docs(docs):
|
4088 |
return "\n\n".join(doc.page_content for doc in docs)
|
4089 |
|
4090 |
+
context = format_docs(docs)
|
4091 |
+
context
|
4092 |
|
4093 |
rag_chain = (
|
4094 |
{
|
|
|
4226 |
)
|
4227 |
gr.Markdown("© 2025 Esra Belhassen. All rights reserved")
|
4228 |
|
4229 |
+
chat.launch(share=True)
|
4230 |
|