Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,51 +1,4033 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from typing import List
|
|
|
|
|
|
|
|
|
|
| 2 |
from langchain import hub
|
| 3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
from langchain_community.vectorstores import Chroma
|
| 5 |
from langchain.vectorstores import Chroma
|
| 6 |
-
import chromadb
|
| 7 |
from langchain_core.output_parsers import StrOutputParser
|
| 8 |
from langchain_core.runnables import RunnablePassthrough
|
|
|
|
| 9 |
import bs4
|
| 10 |
from sentence_transformers import SentenceTransformer
|
| 11 |
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
| 12 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 13 |
import ollama
|
| 14 |
from langchain.embeddings import OllamaEmbeddings, HuggingFaceEmbeddings
|
|
|
|
| 15 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 16 |
import uuid
|
| 17 |
import os
|
| 18 |
-
from
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
load_dotenv()
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
embeddings_model = HuggingFaceEmbeddings(model_name="HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5")
|
| 50 |
|
| 51 |
model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-large-mnli")
|
|
@@ -57,18 +4039,14 @@ def detect_intent(text):
|
|
| 57 |
result = classifier(text, candidate_labels=["question", "greeting", "small talk", "feedback", "thanks"])
|
| 58 |
label = result["labels"][0]
|
| 59 |
return label.lower()
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
with zipfile.ZipFile("chroma_db_Copy.zip", "r") as zip_ref:
|
| 63 |
-
zip_ref.extractall("./")
|
| 64 |
-
|
| 65 |
-
chroma_db_path = "./chroma_db_Copy"
|
| 66 |
chroma_client = chromadb.PersistentClient(path=chroma_db_path)
|
| 67 |
|
| 68 |
data = chroma_client.get_collection(name="my_dataaaa")
|
| 69 |
vectorstore = Chroma(
|
| 70 |
collection_name="my_dataaaa",
|
| 71 |
-
persist_directory="./
|
| 72 |
embedding_function=embeddings_model
|
| 73 |
)
|
| 74 |
|
|
@@ -109,7 +4087,8 @@ llm = ChatOpenAI(model="gpt-3.5-turbo")
|
|
| 109 |
def format_docs(docs):
|
| 110 |
return "\n\n".join(doc.page_content for doc in docs)
|
| 111 |
|
| 112 |
-
|
|
|
|
| 113 |
|
| 114 |
rag_chain = (
|
| 115 |
{
|
|
@@ -247,5 +4226,5 @@ with gr.Blocks() as chat:
|
|
| 247 |
)
|
| 248 |
gr.Markdown("© 2025 Esra Belhassen. All rights reserved")
|
| 249 |
|
| 250 |
-
chat.launch()
|
| 251 |
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import uuid
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 6 |
+
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
|
| 7 |
+
from langchain_core.prompts import PromptTemplate
|
| 8 |
+
from langchain_community.vectorstores import Chroma
|
| 9 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 10 |
+
from langchain_openai import ChatOpenAI
|
| 11 |
+
from langchain.chains import RetrievalQA
|
| 12 |
+
from langchain_community.document_loaders import UnstructuredURLLoader
|
| 13 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 14 |
+
from langchain_community.vectorstores.utils import filter_complex_metadata
|
| 15 |
+
import smtplib
|
| 16 |
+
from email.mime.text import MIMEText
|
| 17 |
+
from email.mime.multipart import MIMEMultipart
|
| 18 |
+
import logging
|
| 19 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 20 |
from typing import List
|
| 21 |
+
from langchain_core.documents import Document
|
| 22 |
+
from langchain_community.document_loaders import PyPDFLoader, WebBaseLoader
|
| 23 |
+
from langchain_unstructured import UnstructuredLoader
|
| 24 |
from langchain import hub
|
| 25 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 26 |
from langchain_community.vectorstores import Chroma
|
| 27 |
from langchain.vectorstores import Chroma
|
|
|
|
| 28 |
from langchain_core.output_parsers import StrOutputParser
|
| 29 |
from langchain_core.runnables import RunnablePassthrough
|
| 30 |
+
import os
|
| 31 |
import bs4
|
| 32 |
from sentence_transformers import SentenceTransformer
|
| 33 |
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
| 34 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 35 |
import ollama
|
| 36 |
from langchain.embeddings import OllamaEmbeddings, HuggingFaceEmbeddings
|
| 37 |
+
from langchain_ollama import OllamaEmbeddings
|
| 38 |
import numpy as np
|
| 39 |
+
from sklearn.decomposition import PCA
|
| 40 |
+
import matplotlib.pyplot as plt
|
| 41 |
+
import chromadb
|
| 42 |
import uuid
|
| 43 |
import os
|
| 44 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 45 |
+
load_dotenv()
|
| 46 |
+
|
| 47 |
+
os.environ['LANGCHAIN_TRACING_V2'] = 'true'
|
| 48 |
+
os.environ['LANGCHAIN_ENDPOINT'] = 'https://api.smith.langchain.com'
|
| 49 |
+
os.environ['LANGCHAIN_API_KEY']
|
| 50 |
+
os.environ["OPENAI_API_KEY"]
|
| 51 |
+
|
| 52 |
+
ef clean_text(text):
|
| 53 |
+
'''this functionn clean the output of the webmloader '''
|
| 54 |
+
text = text.replace('\xa0', ' ')
|
| 55 |
+
text = re.sub(r'[\n\r\t]+', ' ', text)
|
| 56 |
+
text = re.sub(r'\s+', ' ', text)
|
| 57 |
+
|
| 58 |
+
return text.strip()
|
| 59 |
+
|
| 60 |
+
chroma_db_path = "./chroma_db"
|
| 61 |
+
chroma_client = chromadb.PersistentClient(path=chroma_db_path)
|
| 62 |
+
|
| 63 |
+
data = chroma_client.get_collection(name="my_dataaaa")
|
| 64 |
+
|
| 65 |
+
file_path = (
|
| 66 |
+
"Charte.pdf"
|
| 67 |
+
)
|
| 68 |
+
loader = PyPDFLoader(file_path)
|
| 69 |
+
pages = []
|
| 70 |
+
async for page in loader.alazy_load():
|
| 71 |
+
pages.append(page)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
document0=pages[0].page_content
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
document0
|
| 78 |
+
|
| 79 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 80 |
+
splits1 = text_splitter.split_text(document0)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
splits1
|
| 84 |
+
|
| 85 |
+
embeddings1 = embeddings_model.embed_documents(
|
| 86 |
+
splits1
|
| 87 |
+
# normalize_embeddings=True,
|
| 88 |
+
# batch_size=256,
|
| 89 |
+
# show_progress_bar=True
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
ids1 = [str(uuid.uuid4()) for _ in range(len(splits1))]
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
data.add(
|
| 99 |
+
documents=splits1,
|
| 100 |
+
embeddings=embeddings1,
|
| 101 |
+
ids=ids1
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
file_path = "circulaire 35-2010.pdf"
|
| 106 |
+
loader = PyPDFLoader(file_path)
|
| 107 |
+
pages = []
|
| 108 |
+
async for page in loader.alazy_load():
|
| 109 |
+
pages.append(page)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
document1=[page.page_content for doc in pages]
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
document1
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
document1 = "\n".join(document1)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 127 |
+
splits2 = text_splitter.split_text(document1)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
splits2
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
embeddings2 = embeddings_model.embed_documents(
|
| 137 |
+
splits2,
|
| 138 |
+
# normalize_embeddings=True,
|
| 139 |
+
# batch_size=256,
|
| 140 |
+
# show_progress_bar=True
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
ids2 = [str(uuid.uuid4()) for _ in range(len(splits2))]
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
data.add(
|
| 153 |
+
documents=splits2,
|
| 154 |
+
embeddings=embeddings2,
|
| 155 |
+
ids=ids2
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
file_path = "Demande de prolongation de stage MP2 Physique.pdf"
|
| 161 |
+
loader = PyPDFLoader(file_path)
|
| 162 |
+
pages = []
|
| 163 |
+
async for page in loader.alazy_load():
|
| 164 |
+
pages.append(page)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
document2 = [page.page_content for doc in pages]
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
document2
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
document2 = "\n".join(document2)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 180 |
+
splits3 = text_splitter.split_text(document2)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
splits3
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
embeddings3 = embeddings_model.embed_documents(
|
| 193 |
+
splits3,
|
| 194 |
+
# normalize_embeddings=True,
|
| 195 |
+
# batch_size=256,
|
| 196 |
+
# show_progress_bar=True
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
ids3 = [str(uuid.uuid4()) for _ in range(len(splits3))]
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
data.add(
|
| 210 |
+
documents=splits3,
|
| 211 |
+
embeddings=embeddings3,
|
| 212 |
+
ids=ids3
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
file_path = "dérogation pdf.pdf"
|
| 219 |
+
loader = PyPDFLoader(file_path)
|
| 220 |
+
pages = []
|
| 221 |
+
async for page in loader.alazy_load():
|
| 222 |
+
pages.append(page)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
document3=[page.page_content for doc in pages]
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
document3
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
document3 = "\n".join(document3)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 241 |
+
splits4 = text_splitter.split_text(document3)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
splits4
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
embeddings4 = embeddings_model.embed_documents(
|
| 251 |
+
splits4,
|
| 252 |
+
# normalize_embeddings=True,
|
| 253 |
+
# batch_size=256,
|
| 254 |
+
# show_progress_bar=True
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
ids4 = [str(uuid.uuid4()) for _ in range(len(splits4))]
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
data.add(
|
| 267 |
+
documents=splits4,
|
| 268 |
+
embeddings=embeddings4,
|
| 269 |
+
ids=ids4
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
file_path = "Fiche d'évaluation de stage.pdf"
|
| 275 |
+
loader = PyPDFLoader(file_path)
|
| 276 |
+
pages = []
|
| 277 |
+
async for page in loader.alazy_load():
|
| 278 |
+
pages.append(page)
|
| 279 |
+
|
| 280 |
+
document4=[page.page_content for doc in pages]
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
document4
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
document4 = "\n".join(document4)
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 293 |
+
splits5 = text_splitter.split_text(document4)
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
splits5
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
embeddings5 = embeddings_model.embed_documents(
|
| 306 |
+
splits5,
|
| 307 |
+
# normalize_embeddings=True,
|
| 308 |
+
# batch_size=256,
|
| 309 |
+
# show_progress_bar=True
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
ids5 = [str(uuid.uuid4()) for _ in range(len(splits5))]
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
data.add(
|
| 317 |
+
documents=splits5,
|
| 318 |
+
embeddings=embeddings5,
|
| 319 |
+
ids=ids5
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
file_path = "النظام الداخلي لكلية العلوم بالمنستير.pdf"
|
| 325 |
+
loader = PyPDFLoader(file_path)
|
| 326 |
+
pages = []
|
| 327 |
+
async for page in loader.alazy_load():
|
| 328 |
+
pages.append(page)
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
document5=[page.page_content for doc in pages]
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
document5
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
document5 = "\n".join(document5)
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 349 |
+
splits6 = text_splitter.split_text(document5)
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
splits6
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
embeddings6 = embeddings_model.embed_documents(
|
| 359 |
+
splits6,
|
| 360 |
+
# normalize_embeddings=True,
|
| 361 |
+
# batch_size=256,
|
| 362 |
+
# show_progress_bar=True
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
ids6 = [str(uuid.uuid4()) for _ in range(len(splits6))]
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
data.add(
|
| 373 |
+
documents=splits6,
|
| 374 |
+
embeddings=embeddings6,
|
| 375 |
+
ids=ids6
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
file_path = "sante_mentale.pdf"
|
| 380 |
+
loader = PyPDFLoader(file_path)
|
| 381 |
+
pages = []
|
| 382 |
+
async for page in loader.alazy_load():
|
| 383 |
+
pages.append(page)
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
document6=[page.page_content for doc in pages]
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
document6
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
document6 = "\n".join(document6)
|
| 395 |
+
|
| 396 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 397 |
+
splits7 = text_splitter.split_text(document6)
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
splits7
|
| 401 |
+
|
| 402 |
+
embeddings7 = embeddings_model.embed_documents(
|
| 403 |
+
splits7,
|
| 404 |
+
# normalize_embeddings=True,
|
| 405 |
+
# batch_size=256,
|
| 406 |
+
# show_progress_bar=True
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
ids7 = [str(uuid.uuid4()) for _ in range(len(splits7))]
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
data.add(
|
| 415 |
+
documents=splits7,
|
| 416 |
+
embeddings=embeddings7,
|
| 417 |
+
ids=ids7
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
file_path = "sante_mentale2.pdf"
|
| 423 |
+
loader = PyPDFLoader(file_path)
|
| 424 |
+
pages = []
|
| 425 |
+
async for page in loader.alazy_load():
|
| 426 |
+
pages.append(page)
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
document7=[page.page_content for doc in pages]
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
document7
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
document7 = "\n".join(document7)
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 447 |
+
splits8 = text_splitter.split_text(document7)
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
splits8
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
embeddings8 = embeddings_model.embed_documents(
|
| 455 |
+
splits8,
|
| 456 |
+
# normalize_embeddings=True,
|
| 457 |
+
# batch_size=256,
|
| 458 |
+
# show_progress_bar=True
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
ids8 = [str(uuid.uuid4()) for _ in range(len(splits8))]
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
data.add(
|
| 468 |
+
documents=splits8,
|
| 469 |
+
embeddings=embeddings8,
|
| 470 |
+
ids=ids8
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
file_path = "score_pour_mastere.pdf"
|
| 476 |
+
loader = PyPDFLoader(file_path)
|
| 477 |
+
pages = []
|
| 478 |
+
async for page in loader.alazy_load():
|
| 479 |
+
pages.append(page)
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
# In[99]:
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
document8=[page.page_content for doc in pages]
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
# In[100]:
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
document8
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
# # splitting DOC8 into chunks
|
| 495 |
+
|
| 496 |
+
# In[102]:
|
| 497 |
+
|
| 498 |
+
|
| 499 |
+
document8 = "\n".join(document8)
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
# In[103]:
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 506 |
+
splits9 = text_splitter.split_text(document8)
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
# In[104]:
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
splits9
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
# In[105]:
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
embeddings9 = embeddings_model.embed_documents(
|
| 519 |
+
splits9,
|
| 520 |
+
# normalize_embeddings=True,
|
| 521 |
+
# batch_size=256,
|
| 522 |
+
# show_progress_bar=True
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
# In[106]:
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
ids9 = [str(uuid.uuid4()) for _ in range(len(splits9))]
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
# In[107]:
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
data.add(
|
| 536 |
+
documents=splits9,
|
| 537 |
+
embeddings=embeddings9,
|
| 538 |
+
ids=ids9
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
# # Master RECHERCHE
|
| 543 |
+
|
| 544 |
+
# # Document 9 Recherche chimie
|
| 545 |
+
|
| 546 |
+
# In[110]:
|
| 547 |
+
|
| 548 |
+
|
| 549 |
+
file_path = "recherche_chimie.pdf"
|
| 550 |
+
loader = PyPDFLoader(file_path)
|
| 551 |
+
pages = []
|
| 552 |
+
async for page in loader.alazy_load():
|
| 553 |
+
pages.append(page)
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
# In[111]:
|
| 557 |
+
|
| 558 |
+
|
| 559 |
+
document9=[page.page_content for doc in pages]
|
| 560 |
+
|
| 561 |
+
|
| 562 |
+
# In[112]:
|
| 563 |
+
|
| 564 |
+
|
| 565 |
+
document9
|
| 566 |
+
|
| 567 |
+
|
| 568 |
+
# # splitting DOC9 into chunks
|
| 569 |
+
|
| 570 |
+
# In[114]:
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
document9= "\n".join(document9)
|
| 574 |
+
|
| 575 |
+
|
| 576 |
+
# In[115]:
|
| 577 |
+
|
| 578 |
+
|
| 579 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 580 |
+
splits10 = text_splitter.split_text(document9)
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
# In[116]:
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
splits10
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
# In[117]:
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
embeddings10 = embeddings_model.embed_documents(
|
| 593 |
+
splits10,
|
| 594 |
+
# normalize_embeddings=True,
|
| 595 |
+
# batch_size=256,
|
| 596 |
+
# show_progress_bar=True
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
# In[118]:
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
ids10 = [str(uuid.uuid4()) for _ in range(len(splits10))]
|
| 604 |
+
|
| 605 |
+
|
| 606 |
+
# In[119]:
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
data.add(
|
| 610 |
+
documents=splits10,
|
| 611 |
+
embeddings=embeddings10,
|
| 612 |
+
ids=ids10
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
# # Document 10 Recherche info
|
| 617 |
+
|
| 618 |
+
# In[121]:
|
| 619 |
+
|
| 620 |
+
|
| 621 |
+
file_path = "recherche_info.pdf"
|
| 622 |
+
loader = PyPDFLoader(file_path)
|
| 623 |
+
pages = []
|
| 624 |
+
async for page in loader.alazy_load():
|
| 625 |
+
pages.append(page)
|
| 626 |
+
|
| 627 |
+
|
| 628 |
+
# In[122]:
|
| 629 |
+
|
| 630 |
+
|
| 631 |
+
document10=[page.page_content for doc in pages]
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
# In[123]:
|
| 635 |
+
|
| 636 |
+
|
| 637 |
+
document10
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
# # splitting DOC10 into chunks
|
| 641 |
+
|
| 642 |
+
# In[125]:
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
document10= "\n".join(document10)
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
# In[126]:
|
| 649 |
+
|
| 650 |
+
|
| 651 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 652 |
+
splits11 = text_splitter.split_text(document10)
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
# In[127]:
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
splits11
|
| 659 |
+
|
| 660 |
+
|
| 661 |
+
# In[128]:
|
| 662 |
+
|
| 663 |
+
|
| 664 |
+
embeddings11 = embeddings_model.embed_documents(
|
| 665 |
+
splits11,
|
| 666 |
+
# normalize_embeddings=True,
|
| 667 |
+
# batch_size=256,
|
| 668 |
+
# show_progress_bar=True
|
| 669 |
+
)
|
| 670 |
+
|
| 671 |
+
|
| 672 |
+
# In[129]:
|
| 673 |
+
|
| 674 |
+
|
| 675 |
+
ids11 = [str(uuid.uuid4()) for _ in range(len(splits11))]
|
| 676 |
+
|
| 677 |
+
|
| 678 |
+
# In[130]:
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
data.add(
|
| 682 |
+
documents=splits11,
|
| 683 |
+
embeddings=embeddings11,
|
| 684 |
+
ids=ids11
|
| 685 |
+
)
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
# # Document 11 Recherche physique
|
| 689 |
+
|
| 690 |
+
# In[132]:
|
| 691 |
+
|
| 692 |
+
|
| 693 |
+
file_path = "recherche_phy.pdf"
|
| 694 |
+
loader = PyPDFLoader(file_path)
|
| 695 |
+
pages = []
|
| 696 |
+
async for page in loader.alazy_load():
|
| 697 |
+
pages.append(page)
|
| 698 |
+
|
| 699 |
+
|
| 700 |
+
# In[133]:
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
document11=[page.page_content for doc in pages]
|
| 704 |
+
|
| 705 |
+
|
| 706 |
+
# In[134]:
|
| 707 |
+
|
| 708 |
+
|
| 709 |
+
document11
|
| 710 |
+
|
| 711 |
+
|
| 712 |
+
# # splitting DOC11 into chunks
|
| 713 |
+
|
| 714 |
+
# In[136]:
|
| 715 |
+
|
| 716 |
+
|
| 717 |
+
document11= "\n".join(document11)
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
# In[137]:
|
| 721 |
+
|
| 722 |
+
|
| 723 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 724 |
+
splits12 = text_splitter.split_text(document11)
|
| 725 |
+
|
| 726 |
+
|
| 727 |
+
# In[138]:
|
| 728 |
+
|
| 729 |
+
|
| 730 |
+
splits12
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
# In[139]:
|
| 734 |
+
|
| 735 |
+
|
| 736 |
+
embeddings12 = embeddings_model.embed_documents(
|
| 737 |
+
splits12,
|
| 738 |
+
# normalize_embeddings=True,
|
| 739 |
+
# batch_size=256,
|
| 740 |
+
# show_progress_bar=True
|
| 741 |
+
)
|
| 742 |
+
|
| 743 |
+
|
| 744 |
+
# In[140]:
|
| 745 |
+
|
| 746 |
+
|
| 747 |
+
ids12 = [str(uuid.uuid4()) for _ in range(len(splits12))]
|
| 748 |
+
|
| 749 |
+
|
| 750 |
+
# In[141]:
|
| 751 |
+
|
| 752 |
+
|
| 753 |
+
data.add(
|
| 754 |
+
documents=splits12,
|
| 755 |
+
embeddings=embeddings12,
|
| 756 |
+
ids=ids12
|
| 757 |
+
)
|
| 758 |
+
|
| 759 |
+
|
| 760 |
+
# # Mastere Pro
|
| 761 |
+
|
| 762 |
+
# # Document 12 PRO chimie
|
| 763 |
+
|
| 764 |
+
# In[144]:
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
file_path = "pro_chimie.pdf"
|
| 768 |
+
loader = PyPDFLoader(file_path)
|
| 769 |
+
pages = []
|
| 770 |
+
async for page in loader.alazy_load():
|
| 771 |
+
pages.append(page)
|
| 772 |
+
|
| 773 |
+
|
| 774 |
+
# In[145]:
|
| 775 |
+
|
| 776 |
+
|
| 777 |
+
document12=[page.page_content for doc in pages]
|
| 778 |
+
|
| 779 |
+
|
| 780 |
+
# In[146]:
|
| 781 |
+
|
| 782 |
+
|
| 783 |
+
document12
|
| 784 |
+
|
| 785 |
+
|
| 786 |
+
# # splitting DOC 12 into chunks
|
| 787 |
+
|
| 788 |
+
# In[148]:
|
| 789 |
+
|
| 790 |
+
|
| 791 |
+
document12= "\n".join(document12)
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
# In[149]:
|
| 795 |
+
|
| 796 |
+
|
| 797 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 798 |
+
splits13= text_splitter.split_text(document12)
|
| 799 |
+
|
| 800 |
+
|
| 801 |
+
# In[150]:
|
| 802 |
+
|
| 803 |
+
|
| 804 |
+
splits13
|
| 805 |
+
|
| 806 |
+
|
| 807 |
+
# In[151]:
|
| 808 |
+
|
| 809 |
+
|
| 810 |
+
embeddings13 = embeddings_model.embed_documents(
|
| 811 |
+
splits13,
|
| 812 |
+
# normalize_embeddings=True,
|
| 813 |
+
# batch_size=256,
|
| 814 |
+
# show_progress_bar=True
|
| 815 |
+
)
|
| 816 |
+
|
| 817 |
+
|
| 818 |
+
# In[152]:
|
| 819 |
+
|
| 820 |
+
|
| 821 |
+
ids13 = [str(uuid.uuid4()) for _ in range(len(splits13))]
|
| 822 |
+
|
| 823 |
+
|
| 824 |
+
# In[153]:
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
data.add(
|
| 828 |
+
documents=splits13,
|
| 829 |
+
embeddings=embeddings13,
|
| 830 |
+
ids=ids13
|
| 831 |
+
)
|
| 832 |
+
|
| 833 |
+
|
| 834 |
+
# # Document 13 PRO info
|
| 835 |
+
|
| 836 |
+
# In[155]:
|
| 837 |
+
|
| 838 |
+
|
| 839 |
+
file_path = "pro_info.pdf"
|
| 840 |
+
loader = PyPDFLoader(file_path)
|
| 841 |
+
pages = []
|
| 842 |
+
async for page in loader.alazy_load():
|
| 843 |
+
pages.append(page)
|
| 844 |
+
|
| 845 |
+
|
| 846 |
+
# In[156]:
|
| 847 |
+
|
| 848 |
+
|
| 849 |
+
document13=[page.page_content for doc in pages]
|
| 850 |
+
|
| 851 |
+
|
| 852 |
+
# In[157]:
|
| 853 |
+
|
| 854 |
+
|
| 855 |
+
document13
|
| 856 |
+
|
| 857 |
+
|
| 858 |
+
# # splitting DOC 13 into chunks
|
| 859 |
+
|
| 860 |
+
# In[159]:
|
| 861 |
+
|
| 862 |
+
|
| 863 |
+
document13= "\n".join(document13)
|
| 864 |
+
|
| 865 |
+
|
| 866 |
+
# In[160]:
|
| 867 |
+
|
| 868 |
+
|
| 869 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 870 |
+
splits14= text_splitter.split_text(document13)
|
| 871 |
+
|
| 872 |
+
|
| 873 |
+
# In[161]:
|
| 874 |
+
|
| 875 |
+
|
| 876 |
+
splits14
|
| 877 |
+
|
| 878 |
+
|
| 879 |
+
# In[162]:
|
| 880 |
+
|
| 881 |
+
|
| 882 |
+
embeddings14 = embeddings_model.embed_documents(
|
| 883 |
+
splits14,
|
| 884 |
+
# normalize_embeddings=True,
|
| 885 |
+
# batch_size=256,
|
| 886 |
+
# show_progress_bar=True
|
| 887 |
+
)
|
| 888 |
+
|
| 889 |
+
|
| 890 |
+
# In[163]:
|
| 891 |
+
|
| 892 |
+
|
| 893 |
+
ids14 = [str(uuid.uuid4()) for _ in range(len(splits14))]
|
| 894 |
+
|
| 895 |
+
|
| 896 |
+
# In[164]:
|
| 897 |
+
|
| 898 |
+
|
| 899 |
+
data.add(
|
| 900 |
+
documents=splits14,
|
| 901 |
+
embeddings=embeddings14,
|
| 902 |
+
ids=ids14
|
| 903 |
+
)
|
| 904 |
+
|
| 905 |
+
|
| 906 |
+
# # Document 14 on peut effectuer deux stages en meme temps
|
| 907 |
+
|
| 908 |
+
# In[166]:
|
| 909 |
+
|
| 910 |
+
|
| 911 |
+
file_path = "deux_stage_.pdf"
|
| 912 |
+
loader = PyPDFLoader(file_path)
|
| 913 |
+
pages = []
|
| 914 |
+
async for page in loader.alazy_load():
|
| 915 |
+
pages.append(page)
|
| 916 |
+
|
| 917 |
+
|
| 918 |
+
# In[167]:
|
| 919 |
+
|
| 920 |
+
|
| 921 |
+
document14=[page.page_content for doc in pages]
|
| 922 |
+
|
| 923 |
+
|
| 924 |
+
# In[168]:
|
| 925 |
+
|
| 926 |
+
|
| 927 |
+
document14
|
| 928 |
+
|
| 929 |
+
|
| 930 |
+
# # splitting DOC14 INTO chunks
|
| 931 |
+
|
| 932 |
+
# In[170]:
|
| 933 |
+
|
| 934 |
+
|
| 935 |
+
document14= "\n".join(document14)
|
| 936 |
+
|
| 937 |
+
|
| 938 |
+
# In[171]:
|
| 939 |
+
|
| 940 |
+
|
| 941 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 942 |
+
splits15= text_splitter.split_text(document14)
|
| 943 |
+
|
| 944 |
+
|
| 945 |
+
# In[172]:
|
| 946 |
+
|
| 947 |
+
|
| 948 |
+
splits15
|
| 949 |
+
|
| 950 |
+
|
| 951 |
+
# In[173]:
|
| 952 |
+
|
| 953 |
+
|
| 954 |
+
embeddings15= embeddings_model.embed_documents(
|
| 955 |
+
splits15,
|
| 956 |
+
# normalize_embeddings=True,
|
| 957 |
+
# batch_size=256,
|
| 958 |
+
# show_progress_bar=True
|
| 959 |
+
)
|
| 960 |
+
|
| 961 |
+
|
| 962 |
+
# In[174]:
|
| 963 |
+
|
| 964 |
+
|
| 965 |
+
ids15 = [str(uuid.uuid4()) for _ in range(len(splits15))]
|
| 966 |
+
|
| 967 |
+
|
| 968 |
+
# In[175]:
|
| 969 |
+
|
| 970 |
+
|
| 971 |
+
data.add(
|
| 972 |
+
documents=splits15,
|
| 973 |
+
embeddings=embeddings15,
|
| 974 |
+
ids=ids15
|
| 975 |
+
)
|
| 976 |
+
|
| 977 |
+
|
| 978 |
+
# # Document 15 des question avec reponse
|
| 979 |
+
|
| 980 |
+
# In[177]:
|
| 981 |
+
|
| 982 |
+
|
| 983 |
+
file_path = "Les avantages de la carte étudiante.pdf"
|
| 984 |
+
loader = PyPDFLoader(file_path)
|
| 985 |
+
pages = []
|
| 986 |
+
async for page in loader.alazy_load():
|
| 987 |
+
pages.append(page)
|
| 988 |
+
|
| 989 |
+
|
| 990 |
+
# In[178]:
|
| 991 |
+
|
| 992 |
+
|
| 993 |
+
document15=[page.page_content for doc in pages]
|
| 994 |
+
|
| 995 |
+
|
| 996 |
+
# In[179]:
|
| 997 |
+
|
| 998 |
+
|
| 999 |
+
document15
|
| 1000 |
+
|
| 1001 |
+
|
| 1002 |
+
# # Splitting DOC15 into chunks
|
| 1003 |
+
|
| 1004 |
+
# In[181]:
|
| 1005 |
+
|
| 1006 |
+
|
| 1007 |
+
document15= "\n".join(document15)
|
| 1008 |
+
|
| 1009 |
+
|
| 1010 |
+
# In[182]:
|
| 1011 |
+
|
| 1012 |
+
|
| 1013 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50, separators=["\n\n", "\n", ".", " ", "\n•"])
|
| 1014 |
+
splits16= text_splitter.split_text(document15)
|
| 1015 |
+
|
| 1016 |
+
|
| 1017 |
+
# In[183]:
|
| 1018 |
+
|
| 1019 |
+
|
| 1020 |
+
splits16
|
| 1021 |
+
|
| 1022 |
+
|
| 1023 |
+
# In[184]:
|
| 1024 |
+
|
| 1025 |
+
|
| 1026 |
+
embeddings16 = embeddings_model.embed_documents(
|
| 1027 |
+
splits16,
|
| 1028 |
+
# normalize_embeddings=True,
|
| 1029 |
+
# batch_size=256,
|
| 1030 |
+
# show_progress_bar=True
|
| 1031 |
+
)
|
| 1032 |
+
|
| 1033 |
+
|
| 1034 |
+
# In[185]:
|
| 1035 |
+
|
| 1036 |
+
|
| 1037 |
+
ids16 = [str(uuid.uuid4()) for _ in range(len(splits16))]
|
| 1038 |
+
|
| 1039 |
+
|
| 1040 |
+
# In[186]:
|
| 1041 |
+
|
| 1042 |
+
|
| 1043 |
+
data.add(
|
| 1044 |
+
documents=splits16,
|
| 1045 |
+
embeddings=embeddings16,
|
| 1046 |
+
ids=ids16
|
| 1047 |
+
)
|
| 1048 |
+
|
| 1049 |
+
|
| 1050 |
+
# # Checking does the data is added or not ✅
|
| 1051 |
+
|
| 1052 |
+
# In[188]:
|
| 1053 |
+
|
| 1054 |
+
|
| 1055 |
+
data = data.get(include=['embeddings'])
|
| 1056 |
+
print(data)
|
| 1057 |
+
|
| 1058 |
+
# embeddings_model = SentenceTransformer("HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5")
|
| 1059 |
+
embeddings_model = HuggingFaceEmbeddings(model_name="HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5")
|
| 1060 |
+
|
| 1061 |
+
|
| 1062 |
+
# # Configure `ChromaDB` for our work
|
| 1063 |
+
|
| 1064 |
+
# In[29]:
|
| 1065 |
+
|
| 1066 |
+
|
| 1067 |
+
# chroma_client.delete_collection(name="my_dataaaa") # Deletes "my_dataaaa"
|
| 1068 |
+
|
| 1069 |
+
|
| 1070 |
+
# In[30]:
|
| 1071 |
+
|
| 1072 |
+
|
| 1073 |
+
chroma_db_path = "./chroma_db"
|
| 1074 |
+
chroma_client = chromadb.PersistentClient(path=chroma_db_path)
|
| 1075 |
+
|
| 1076 |
+
|
| 1077 |
+
# In[31]:
|
| 1078 |
+
|
| 1079 |
+
|
| 1080 |
+
data = chroma_client.get_or_create_collection(name="my_dataaaa")
|
| 1081 |
+
|
| 1082 |
+
|
| 1083 |
+
# # <p style="color: orange;">Document 0 Masteres-Procedure-de-Depot</p>
|
| 1084 |
+
|
| 1085 |
+
# In[33]:
|
| 1086 |
+
|
| 1087 |
+
|
| 1088 |
+
loader = WebBaseLoader(
|
| 1089 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/152/Masteres-Procedure-de-Depot",),
|
| 1090 |
+
bs_kwargs=dict(
|
| 1091 |
+
parse_only=bs4.SoupStrainer(
|
| 1092 |
+
class_=("content")
|
| 1093 |
+
)
|
| 1094 |
+
),
|
| 1095 |
+
)
|
| 1096 |
+
Masteres_Procedure_de_Depot = loader.load()
|
| 1097 |
+
|
| 1098 |
+
|
| 1099 |
+
# In[34]:
|
| 1100 |
+
|
| 1101 |
+
|
| 1102 |
+
Masteres_Procedure_de_Depot = [
|
| 1103 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 1104 |
+
for doc in Masteres_Procedure_de_Depot]
|
| 1105 |
+
Masteres_Procedure_de_Depot
|
| 1106 |
+
|
| 1107 |
+
|
| 1108 |
+
# ## spliiting into chunks the doc0
|
| 1109 |
+
|
| 1110 |
+
# In[36]:
|
| 1111 |
+
|
| 1112 |
+
|
| 1113 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100)
|
| 1114 |
+
splits1 = text_splitter.split_documents( Masteres_Procedure_de_Depot)
|
| 1115 |
+
|
| 1116 |
+
|
| 1117 |
+
# In[37]:
|
| 1118 |
+
|
| 1119 |
+
|
| 1120 |
+
splits1
|
| 1121 |
+
|
| 1122 |
+
|
| 1123 |
+
# ## Saving to chromadb in data
|
| 1124 |
+
|
| 1125 |
+
# In[39]:
|
| 1126 |
+
|
| 1127 |
+
|
| 1128 |
+
contents1 = [doc.page_content for doc in splits1]
|
| 1129 |
+
metadata1 = [doc.metadata for doc in splits1]
|
| 1130 |
+
|
| 1131 |
+
|
| 1132 |
+
# In[40]:
|
| 1133 |
+
|
| 1134 |
+
|
| 1135 |
+
embeddings1 = embeddings_model.embed_documents(
|
| 1136 |
+
[doc.page_content for doc in splits1],
|
| 1137 |
+
#normalize_embeddings=True,
|
| 1138 |
+
#batch_size=256,
|
| 1139 |
+
#show_progress_bar=True
|
| 1140 |
+
)
|
| 1141 |
+
print(embeddings1)
|
| 1142 |
+
|
| 1143 |
+
|
| 1144 |
+
# In[41]:
|
| 1145 |
+
|
| 1146 |
+
|
| 1147 |
+
ids = [str(uuid.uuid4()) for _ in range(len(contents1))]
|
| 1148 |
+
|
| 1149 |
+
|
| 1150 |
+
# In[42]:
|
| 1151 |
+
|
| 1152 |
+
|
| 1153 |
+
data.add(
|
| 1154 |
+
documents=contents1,
|
| 1155 |
+
embeddings=embeddings1,
|
| 1156 |
+
metadatas=metadata1,
|
| 1157 |
+
ids=ids
|
| 1158 |
+
)
|
| 1159 |
+
|
| 1160 |
+
|
| 1161 |
+
# In[43]:
|
| 1162 |
+
|
| 1163 |
+
|
| 1164 |
+
# visulizing in a dataframe
|
| 1165 |
+
data_dict = {
|
| 1166 |
+
"ID": ids,
|
| 1167 |
+
"Document": contents1,
|
| 1168 |
+
"Metadata": metadata1,
|
| 1169 |
+
"Embedding Shape": [np.array(embed).shape for embed in embeddings1],
|
| 1170 |
+
}
|
| 1171 |
+
|
| 1172 |
+
df = pd.DataFrame(data_dict)
|
| 1173 |
+
df.tail()
|
| 1174 |
+
|
| 1175 |
+
|
| 1176 |
+
# In[44]:
|
| 1177 |
+
|
| 1178 |
+
|
| 1179 |
+
def append_data(contents, metadata, embeddings):
|
| 1180 |
+
'''this function will append the embeddings and metadata and
|
| 1181 |
+
the document into the data_dict so we can visulize how it looks in chrom '''
|
| 1182 |
+
global df
|
| 1183 |
+
new_ids = list(range(len(df) + 1, len(df) + 1 + len(contents)))
|
| 1184 |
+
|
| 1185 |
+
data_dict["ID"].extend(new_ids)
|
| 1186 |
+
data_dict["Document"].extend(contents)
|
| 1187 |
+
data_dict["Metadata"].extend(metadata)
|
| 1188 |
+
data_dict["Embedding Shape"].extend([np.array(embed).shape for embed in embeddings])
|
| 1189 |
+
|
| 1190 |
+
df = pd.DataFrame(data_dict)
|
| 1191 |
+
|
| 1192 |
+
|
| 1193 |
+
# # <p style="color: orange;">Document 1 Theses-Inscriptions-etProcedure-de-Depot</p>
|
| 1194 |
+
|
| 1195 |
+
# In[46]:
|
| 1196 |
+
|
| 1197 |
+
|
| 1198 |
+
loader = WebBaseLoader(
|
| 1199 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/147/Theses-Inscriptions-etProcedure-de-Depot",),
|
| 1200 |
+
bs_kwargs=dict(
|
| 1201 |
+
parse_only=bs4.SoupStrainer(
|
| 1202 |
+
class_=("content")
|
| 1203 |
+
)
|
| 1204 |
+
),
|
| 1205 |
+
)
|
| 1206 |
+
Theses_Inscriptions_etProcedure_de_Depot = loader.load()
|
| 1207 |
+
|
| 1208 |
+
|
| 1209 |
+
# In[47]:
|
| 1210 |
+
|
| 1211 |
+
|
| 1212 |
+
Theses_Inscriptions_etProcedure_de_Depot = [
|
| 1213 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 1214 |
+
for doc in Theses_Inscriptions_etProcedure_de_Depot]
|
| 1215 |
+
Theses_Inscriptions_etProcedure_de_Depot
|
| 1216 |
+
|
| 1217 |
+
|
| 1218 |
+
# ## splitting into chunks the doc1
|
| 1219 |
+
|
| 1220 |
+
# In[49]:
|
| 1221 |
+
|
| 1222 |
+
|
| 1223 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 1224 |
+
splits2 = text_splitter.split_documents( Theses_Inscriptions_etProcedure_de_Depot)
|
| 1225 |
+
|
| 1226 |
+
|
| 1227 |
+
# In[50]:
|
| 1228 |
+
|
| 1229 |
+
|
| 1230 |
+
splits2
|
| 1231 |
+
|
| 1232 |
+
|
| 1233 |
+
# In[51]:
|
| 1234 |
+
|
| 1235 |
+
|
| 1236 |
+
contents2= [doc.page_content for doc in splits2]
|
| 1237 |
+
metadata2 = [doc.metadata for doc in splits2]
|
| 1238 |
+
|
| 1239 |
+
|
| 1240 |
+
# In[52]:
|
| 1241 |
+
|
| 1242 |
+
|
| 1243 |
+
embeddings2 = embeddings_model.embed_documents(
|
| 1244 |
+
[doc.page_content for doc in splits2],
|
| 1245 |
+
# normalize_embeddings=True,
|
| 1246 |
+
# batch_size=256,
|
| 1247 |
+
# show_progress_bar=True
|
| 1248 |
+
)
|
| 1249 |
+
print(embeddings2)
|
| 1250 |
+
|
| 1251 |
+
|
| 1252 |
+
# In[53]:
|
| 1253 |
+
|
| 1254 |
+
|
| 1255 |
+
ids2= [str(uuid.uuid4()) for _ in range(len(contents2))]
|
| 1256 |
+
|
| 1257 |
+
|
| 1258 |
+
# In[54]:
|
| 1259 |
+
|
| 1260 |
+
|
| 1261 |
+
data.add(
|
| 1262 |
+
documents=contents2,
|
| 1263 |
+
embeddings=embeddings2,
|
| 1264 |
+
metadatas=metadata2,
|
| 1265 |
+
ids=ids2
|
| 1266 |
+
)
|
| 1267 |
+
|
| 1268 |
+
|
| 1269 |
+
# In[55]:
|
| 1270 |
+
|
| 1271 |
+
|
| 1272 |
+
append_data(contents2, metadata2, embeddings2)
|
| 1273 |
+
|
| 1274 |
+
|
| 1275 |
+
# In[56]:
|
| 1276 |
+
|
| 1277 |
+
|
| 1278 |
+
df
|
| 1279 |
+
|
| 1280 |
+
|
| 1281 |
+
# # <p style="color: orange;"> Document 2 رشة_بعنوان_أهمية_الصحة_النفسية</p>
|
| 1282 |
+
|
| 1283 |
+
# In[58]:
|
| 1284 |
+
|
| 1285 |
+
|
| 1286 |
+
loader = WebBaseLoader(
|
| 1287 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/4798/%D9%88%D8%B1%D8%B4%D8%A9-%D8%A8%D8%B9%D9%86%D9%88%D8%A7%D9%86-%D8%A3%D9%87%D9%85%D9%8A%D8%A9-%D8%A7%D9%84%D8%B5%D8%AD%D8%A9-%D8%A7%D9%84%D9%86%D9%81%D8%B3%D9%8A%D8%A9",),
|
| 1288 |
+
bs_kwargs=dict(
|
| 1289 |
+
parse_only=bs4.SoupStrainer(
|
| 1290 |
+
class_=("content")
|
| 1291 |
+
)
|
| 1292 |
+
),
|
| 1293 |
+
)
|
| 1294 |
+
warcha_mental_health = loader.load()
|
| 1295 |
+
|
| 1296 |
+
|
| 1297 |
+
# In[59]:
|
| 1298 |
+
|
| 1299 |
+
|
| 1300 |
+
warcha_mental_health = [
|
| 1301 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 1302 |
+
for doc in warcha_mental_health]
|
| 1303 |
+
warcha_mental_health
|
| 1304 |
+
|
| 1305 |
+
|
| 1306 |
+
# ## spitting doc 2 into chunks
|
| 1307 |
+
|
| 1308 |
+
# In[61]:
|
| 1309 |
+
|
| 1310 |
+
|
| 1311 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 1312 |
+
splits3 = text_splitter.split_documents( warcha_mental_health)
|
| 1313 |
+
|
| 1314 |
+
|
| 1315 |
+
# In[62]:
|
| 1316 |
+
|
| 1317 |
+
|
| 1318 |
+
splits3
|
| 1319 |
+
|
| 1320 |
+
|
| 1321 |
+
# In[63]:
|
| 1322 |
+
|
| 1323 |
+
|
| 1324 |
+
contents3= [doc.page_content for doc in splits3]
|
| 1325 |
+
metadata3 = [doc.metadata for doc in splits3]
|
| 1326 |
+
|
| 1327 |
+
|
| 1328 |
+
# In[64]:
|
| 1329 |
+
|
| 1330 |
+
|
| 1331 |
+
embeddings3 = embeddings_model.embed_documents(
|
| 1332 |
+
[doc.page_content for doc in splits3],
|
| 1333 |
+
# normalize_embeddings=True,
|
| 1334 |
+
# batch_size=256,
|
| 1335 |
+
# show_progress_bar=True
|
| 1336 |
+
)
|
| 1337 |
+
print(embeddings3)
|
| 1338 |
+
|
| 1339 |
+
|
| 1340 |
+
# In[65]:
|
| 1341 |
+
|
| 1342 |
+
|
| 1343 |
+
ids3 = [str(uuid.uuid4()) for _ in range(len(contents3))]
|
| 1344 |
+
|
| 1345 |
+
|
| 1346 |
+
# In[66]:
|
| 1347 |
+
|
| 1348 |
+
|
| 1349 |
+
data.add(
|
| 1350 |
+
documents=contents3,
|
| 1351 |
+
embeddings=embeddings3,
|
| 1352 |
+
metadatas=metadata3,
|
| 1353 |
+
ids=ids3
|
| 1354 |
+
)
|
| 1355 |
+
|
| 1356 |
+
|
| 1357 |
+
# In[67]:
|
| 1358 |
+
|
| 1359 |
+
|
| 1360 |
+
append_data(contents3, metadata3, embeddings3)
|
| 1361 |
+
|
| 1362 |
+
|
| 1363 |
+
# In[68]:
|
| 1364 |
+
|
| 1365 |
+
|
| 1366 |
+
df.tail()
|
| 1367 |
+
|
| 1368 |
+
|
| 1369 |
+
# # <p style="color: orange;"> Document 3 festival-de-la-creativite-estudiantine</p>
|
| 1370 |
+
|
| 1371 |
+
# In[70]:
|
| 1372 |
+
|
| 1373 |
+
|
| 1374 |
+
loader = WebBaseLoader(
|
| 1375 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/4795/festival-de-la-creativite-estudiantine",),
|
| 1376 |
+
bs_kwargs=dict(
|
| 1377 |
+
parse_only=bs4.SoupStrainer(
|
| 1378 |
+
class_=("content")
|
| 1379 |
+
)
|
| 1380 |
+
),
|
| 1381 |
+
)
|
| 1382 |
+
festival_de_la_creativite_estudiantinet = loader.load()
|
| 1383 |
+
|
| 1384 |
+
|
| 1385 |
+
# In[71]:
|
| 1386 |
+
|
| 1387 |
+
|
| 1388 |
+
festival_de_la_creativite_estudiantinet = [
|
| 1389 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 1390 |
+
for doc in festival_de_la_creativite_estudiantinet]
|
| 1391 |
+
festival_de_la_creativite_estudiantinet
|
| 1392 |
+
|
| 1393 |
+
|
| 1394 |
+
# ## splitting the Doc3 into chunks
|
| 1395 |
+
|
| 1396 |
+
# In[73]:
|
| 1397 |
+
|
| 1398 |
+
|
| 1399 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 1400 |
+
splits4 = text_splitter.split_documents( festival_de_la_creativite_estudiantinet)
|
| 1401 |
+
|
| 1402 |
+
|
| 1403 |
+
# In[74]:
|
| 1404 |
+
|
| 1405 |
+
|
| 1406 |
+
print(splits4[0].page_content) # First chunk's content
|
| 1407 |
+
print(splits4[0].metadata)
|
| 1408 |
+
|
| 1409 |
+
|
| 1410 |
+
# In[75]:
|
| 1411 |
+
|
| 1412 |
+
|
| 1413 |
+
contents4= [doc.page_content for doc in splits4]
|
| 1414 |
+
metadata4 = [doc.metadata for doc in splits4]
|
| 1415 |
+
|
| 1416 |
+
|
| 1417 |
+
# In[76]:
|
| 1418 |
+
|
| 1419 |
+
|
| 1420 |
+
embeddings4 = embeddings_model.embed_documents(
|
| 1421 |
+
[doc.page_content for doc in splits4],
|
| 1422 |
+
# normalize_embeddings=True,
|
| 1423 |
+
# batch_size=256,
|
| 1424 |
+
# show_progress_bar=True
|
| 1425 |
+
)
|
| 1426 |
+
print(embeddings4)
|
| 1427 |
+
|
| 1428 |
+
|
| 1429 |
+
# In[77]:
|
| 1430 |
+
|
| 1431 |
+
|
| 1432 |
+
ids4 = [str(uuid.uuid4()) for _ in range(len(contents4))]
|
| 1433 |
+
|
| 1434 |
+
|
| 1435 |
+
# In[78]:
|
| 1436 |
+
|
| 1437 |
+
|
| 1438 |
+
data.add(
|
| 1439 |
+
documents=contents4,
|
| 1440 |
+
embeddings=embeddings4,
|
| 1441 |
+
metadatas=metadata4,
|
| 1442 |
+
ids=ids4
|
| 1443 |
+
)
|
| 1444 |
+
|
| 1445 |
+
|
| 1446 |
+
# In[79]:
|
| 1447 |
+
|
| 1448 |
+
|
| 1449 |
+
append_data(contents4, metadata4, embeddings4)
|
| 1450 |
+
|
| 1451 |
+
|
| 1452 |
+
# In[80]:
|
| 1453 |
+
|
| 1454 |
+
|
| 1455 |
+
df
|
| 1456 |
+
|
| 1457 |
+
|
| 1458 |
+
# # <p style="color: orange;"> Document 4 bourses-d-alternance-2025</p>
|
| 1459 |
+
|
| 1460 |
+
# In[82]:
|
| 1461 |
+
|
| 1462 |
+
|
| 1463 |
+
loader = WebBaseLoader(
|
| 1464 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/4813/bourses-d-alternance-2025",),
|
| 1465 |
+
bs_kwargs=dict(
|
| 1466 |
+
parse_only=bs4.SoupStrainer(
|
| 1467 |
+
class_=("content")
|
| 1468 |
+
)
|
| 1469 |
+
),
|
| 1470 |
+
)
|
| 1471 |
+
Bourse_alternance = loader.load()
|
| 1472 |
+
|
| 1473 |
+
|
| 1474 |
+
# In[83]:
|
| 1475 |
+
|
| 1476 |
+
|
| 1477 |
+
Bourse_alternance = [
|
| 1478 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 1479 |
+
for doc in Bourse_alternance]
|
| 1480 |
+
Bourse_alternance
|
| 1481 |
+
|
| 1482 |
+
|
| 1483 |
+
# ## splitting doc 4 into chunks
|
| 1484 |
+
|
| 1485 |
+
# In[85]:
|
| 1486 |
+
|
| 1487 |
+
|
| 1488 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 1489 |
+
splits5 = text_splitter.split_documents( Bourse_alternance)
|
| 1490 |
+
|
| 1491 |
+
|
| 1492 |
+
# In[86]:
|
| 1493 |
+
|
| 1494 |
+
|
| 1495 |
+
print(splits5[2].page_content)
|
| 1496 |
+
print(splits5[2].metadata)
|
| 1497 |
+
|
| 1498 |
+
|
| 1499 |
+
# In[87]:
|
| 1500 |
+
|
| 1501 |
+
|
| 1502 |
+
contents5= [doc.page_content for doc in splits5]
|
| 1503 |
+
metadata5 = [doc.metadata for doc in splits5]
|
| 1504 |
+
|
| 1505 |
+
|
| 1506 |
+
# In[88]:
|
| 1507 |
+
|
| 1508 |
+
|
| 1509 |
+
embeddings5 = embeddings_model.embed_documents(
|
| 1510 |
+
[doc.page_content for doc in splits5],
|
| 1511 |
+
# normalize_embeddings=True,
|
| 1512 |
+
# batch_size=256,
|
| 1513 |
+
# show_progress_bar=True
|
| 1514 |
+
)
|
| 1515 |
+
print(embeddings5)
|
| 1516 |
+
|
| 1517 |
+
|
| 1518 |
+
# In[89]:
|
| 1519 |
+
|
| 1520 |
+
|
| 1521 |
+
ids5 = [str(uuid.uuid4()) for _ in range(len(contents5))]
|
| 1522 |
+
|
| 1523 |
+
|
| 1524 |
+
# In[90]:
|
| 1525 |
+
|
| 1526 |
+
|
| 1527 |
+
data.add(
|
| 1528 |
+
documents=contents5,
|
| 1529 |
+
embeddings=embeddings5,
|
| 1530 |
+
metadatas=metadata5,
|
| 1531 |
+
ids=ids5
|
| 1532 |
+
)
|
| 1533 |
+
|
| 1534 |
+
|
| 1535 |
+
# In[91]:
|
| 1536 |
+
|
| 1537 |
+
|
| 1538 |
+
append_data(contents5, metadata5, embeddings5)
|
| 1539 |
+
|
| 1540 |
+
|
| 1541 |
+
# In[92]:
|
| 1542 |
+
|
| 1543 |
+
|
| 1544 |
+
df
|
| 1545 |
+
|
| 1546 |
+
|
| 1547 |
+
# # <p style="color: orange;"> Document 5 the-indian-council-for-cultural-relations--iccr</p>
|
| 1548 |
+
|
| 1549 |
+
# In[94]:
|
| 1550 |
+
|
| 1551 |
+
|
| 1552 |
+
loader = WebBaseLoader(
|
| 1553 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/4807/the-indian-council-for-cultural-relations--iccr-",),
|
| 1554 |
+
bs_kwargs=dict(
|
| 1555 |
+
parse_only=bs4.SoupStrainer(
|
| 1556 |
+
class_=("content")
|
| 1557 |
+
)
|
| 1558 |
+
),
|
| 1559 |
+
)
|
| 1560 |
+
the_indian_council_for_cultural_relations = loader.load()
|
| 1561 |
+
|
| 1562 |
+
|
| 1563 |
+
# In[95]:
|
| 1564 |
+
|
| 1565 |
+
|
| 1566 |
+
the_indian_council_for_cultural_relations = [
|
| 1567 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 1568 |
+
for doc in the_indian_council_for_cultural_relations]
|
| 1569 |
+
the_indian_council_for_cultural_relations
|
| 1570 |
+
|
| 1571 |
+
|
| 1572 |
+
# ## splitting doc 5 into chunks
|
| 1573 |
+
|
| 1574 |
+
# In[97]:
|
| 1575 |
+
|
| 1576 |
+
|
| 1577 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 1578 |
+
splits6 = text_splitter.split_documents( the_indian_council_for_cultural_relations)
|
| 1579 |
+
|
| 1580 |
+
|
| 1581 |
+
# In[98]:
|
| 1582 |
+
|
| 1583 |
+
|
| 1584 |
+
splits6
|
| 1585 |
+
|
| 1586 |
+
|
| 1587 |
+
# In[99]:
|
| 1588 |
+
|
| 1589 |
+
|
| 1590 |
+
contents6= [doc.page_content for doc in splits6]
|
| 1591 |
+
metadata6 = [doc.metadata for doc in splits6]
|
| 1592 |
+
|
| 1593 |
+
|
| 1594 |
+
# In[100]:
|
| 1595 |
+
|
| 1596 |
+
|
| 1597 |
+
embeddings6 = embeddings_model.embed_documents(
|
| 1598 |
+
[doc.page_content for doc in splits6],
|
| 1599 |
+
# normalize_embeddings=True,
|
| 1600 |
+
# batch_size=256,
|
| 1601 |
+
# show_progress_bar=True
|
| 1602 |
+
)
|
| 1603 |
+
print(embeddings6)
|
| 1604 |
+
|
| 1605 |
+
|
| 1606 |
+
# In[101]:
|
| 1607 |
+
|
| 1608 |
+
|
| 1609 |
+
ids6 = [str(uuid.uuid4()) for _ in range(len(contents6))]
|
| 1610 |
+
|
| 1611 |
+
|
| 1612 |
+
# In[102]:
|
| 1613 |
+
|
| 1614 |
+
|
| 1615 |
+
data.add(
|
| 1616 |
+
documents=contents6,
|
| 1617 |
+
embeddings=embeddings6,
|
| 1618 |
+
metadatas=metadata6,
|
| 1619 |
+
ids=ids6
|
| 1620 |
+
)
|
| 1621 |
+
|
| 1622 |
+
|
| 1623 |
+
# In[103]:
|
| 1624 |
+
|
| 1625 |
+
|
| 1626 |
+
append_data(contents6, metadata6, embeddings6)
|
| 1627 |
+
|
| 1628 |
+
|
| 1629 |
+
# In[104]:
|
| 1630 |
+
|
| 1631 |
+
|
| 1632 |
+
df
|
| 1633 |
+
|
| 1634 |
+
|
| 1635 |
+
# In[105]:
|
| 1636 |
+
|
| 1637 |
+
|
| 1638 |
+
# page_url = "https://fsm.rnu.tn/useruploads/files/au2425/NV%20ICCR.pdf"
|
| 1639 |
+
# loader = PyPDFLoader(page_url)
|
| 1640 |
+
|
| 1641 |
+
# applications_guidelines_indian = []
|
| 1642 |
+
# async for doc in loader.alazy_load():
|
| 1643 |
+
# applications_guidelines_indian.append(doc)
|
| 1644 |
+
|
| 1645 |
+
|
| 1646 |
+
# In[106]:
|
| 1647 |
+
|
| 1648 |
+
|
| 1649 |
+
# applications_guidelines_indian
|
| 1650 |
+
|
| 1651 |
+
|
| 1652 |
+
# In[107]:
|
| 1653 |
+
|
| 1654 |
+
|
| 1655 |
+
# documents6
|
| 1656 |
+
|
| 1657 |
+
|
| 1658 |
+
# In[108]:
|
| 1659 |
+
|
| 1660 |
+
|
| 1661 |
+
# pip install "unstructured[pdf]"
|
| 1662 |
+
|
| 1663 |
+
|
| 1664 |
+
# # <p style="color: orange;"> Document 6 Règlement intérieur des examens</p>
|
| 1665 |
+
|
| 1666 |
+
# In[110]:
|
| 1667 |
+
|
| 1668 |
+
|
| 1669 |
+
loader = WebBaseLoader(
|
| 1670 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/346/R%C3%A8glement-int%C3%A9rieur-des-examens",),
|
| 1671 |
+
bs_kwargs=dict(
|
| 1672 |
+
parse_only=bs4.SoupStrainer(
|
| 1673 |
+
class_=("content")
|
| 1674 |
+
)
|
| 1675 |
+
),
|
| 1676 |
+
)
|
| 1677 |
+
Règlement_intérieur_des_examens = loader.load()
|
| 1678 |
+
|
| 1679 |
+
|
| 1680 |
+
# In[111]:
|
| 1681 |
+
|
| 1682 |
+
|
| 1683 |
+
Règlement_intérieur_des_examens = [
|
| 1684 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 1685 |
+
for doc in Règlement_intérieur_des_examens]
|
| 1686 |
+
Règlement_intérieur_des_examens
|
| 1687 |
+
|
| 1688 |
+
|
| 1689 |
+
# ## splitting doc 6 into chunks
|
| 1690 |
+
|
| 1691 |
+
# In[113]:
|
| 1692 |
+
|
| 1693 |
+
|
| 1694 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 1695 |
+
splits7 = text_splitter.split_documents( Règlement_intérieur_des_examens)
|
| 1696 |
+
|
| 1697 |
+
|
| 1698 |
+
# In[114]:
|
| 1699 |
+
|
| 1700 |
+
|
| 1701 |
+
splits7
|
| 1702 |
+
|
| 1703 |
+
|
| 1704 |
+
# In[115]:
|
| 1705 |
+
|
| 1706 |
+
|
| 1707 |
+
contents7= [doc.page_content for doc in splits7]
|
| 1708 |
+
metadata7 = [doc.metadata for doc in splits7]
|
| 1709 |
+
|
| 1710 |
+
|
| 1711 |
+
# In[116]:
|
| 1712 |
+
|
| 1713 |
+
|
| 1714 |
+
embeddings7 = embeddings_model.embed_documents(
|
| 1715 |
+
[doc.page_content for doc in splits7],
|
| 1716 |
+
# normalize_embeddings=True,
|
| 1717 |
+
# batch_size=256,
|
| 1718 |
+
# show_progress_bar=True
|
| 1719 |
+
)
|
| 1720 |
+
print(embeddings7)
|
| 1721 |
+
|
| 1722 |
+
|
| 1723 |
+
# In[117]:
|
| 1724 |
+
|
| 1725 |
+
|
| 1726 |
+
ids7 = [str(uuid.uuid4()) for _ in range(len(contents7))]
|
| 1727 |
+
|
| 1728 |
+
|
| 1729 |
+
# In[118]:
|
| 1730 |
+
|
| 1731 |
+
|
| 1732 |
+
data.add(
|
| 1733 |
+
documents=contents7,
|
| 1734 |
+
embeddings=embeddings7,
|
| 1735 |
+
metadatas=metadata7,
|
| 1736 |
+
ids=ids7
|
| 1737 |
+
)
|
| 1738 |
+
|
| 1739 |
+
|
| 1740 |
+
# In[119]:
|
| 1741 |
+
|
| 1742 |
+
|
| 1743 |
+
append_data(contents7, metadata7, embeddings7)
|
| 1744 |
+
|
| 1745 |
+
|
| 1746 |
+
# In[120]:
|
| 1747 |
+
|
| 1748 |
+
|
| 1749 |
+
df
|
| 1750 |
+
|
| 1751 |
+
|
| 1752 |
+
# # <p style="color: orange;">Document 7 Gestion des Stages & PFE (CPE-BR-01-00)</p>
|
| 1753 |
+
|
| 1754 |
+
# In[122]:
|
| 1755 |
+
|
| 1756 |
+
|
| 1757 |
+
loader = WebBaseLoader(
|
| 1758 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/73/Stages-&-PFE",),
|
| 1759 |
+
bs_kwargs=dict(
|
| 1760 |
+
parse_only=bs4.SoupStrainer(
|
| 1761 |
+
class_=("content")
|
| 1762 |
+
)
|
| 1763 |
+
),
|
| 1764 |
+
)
|
| 1765 |
+
Stages_PFE = loader.load()
|
| 1766 |
+
|
| 1767 |
+
|
| 1768 |
+
# In[123]:
|
| 1769 |
+
|
| 1770 |
+
|
| 1771 |
+
Stages_PFE = [
|
| 1772 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 1773 |
+
for doc in Stages_PFE]
|
| 1774 |
+
Stages_PFE
|
| 1775 |
+
|
| 1776 |
+
|
| 1777 |
+
# ## splitting doc 7 into chunks
|
| 1778 |
+
|
| 1779 |
+
# In[125]:
|
| 1780 |
+
|
| 1781 |
+
|
| 1782 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 1783 |
+
splits8 = text_splitter.split_documents( Stages_PFE)
|
| 1784 |
+
|
| 1785 |
+
|
| 1786 |
+
# In[126]:
|
| 1787 |
+
|
| 1788 |
+
|
| 1789 |
+
splits8
|
| 1790 |
+
|
| 1791 |
+
|
| 1792 |
+
# In[127]:
|
| 1793 |
+
|
| 1794 |
+
|
| 1795 |
+
contents8= [doc.page_content for doc in splits8]
|
| 1796 |
+
metadata8 = [doc.metadata for doc in splits8]
|
| 1797 |
+
|
| 1798 |
+
|
| 1799 |
+
# In[128]:
|
| 1800 |
+
|
| 1801 |
+
|
| 1802 |
+
embeddings8= embeddings_model.embed_documents(
|
| 1803 |
+
[doc.page_content for doc in splits8],
|
| 1804 |
+
# normalize_embeddings=True,
|
| 1805 |
+
# batch_size=256,
|
| 1806 |
+
# show_progress_bar=True
|
| 1807 |
+
)
|
| 1808 |
+
print(embeddings8)
|
| 1809 |
+
|
| 1810 |
+
|
| 1811 |
+
# In[129]:
|
| 1812 |
+
|
| 1813 |
+
|
| 1814 |
+
ids8 = [str(uuid.uuid4()) for _ in range(len(contents8))]
|
| 1815 |
+
|
| 1816 |
+
|
| 1817 |
+
# In[130]:
|
| 1818 |
+
|
| 1819 |
+
|
| 1820 |
+
data.add(
|
| 1821 |
+
documents=contents8,
|
| 1822 |
+
embeddings=embeddings8,
|
| 1823 |
+
metadatas=metadata8,
|
| 1824 |
+
ids=ids8
|
| 1825 |
+
)
|
| 1826 |
+
|
| 1827 |
+
|
| 1828 |
+
# In[131]:
|
| 1829 |
+
|
| 1830 |
+
|
| 1831 |
+
append_data(contents8, metadata8, embeddings8)
|
| 1832 |
+
|
| 1833 |
+
|
| 1834 |
+
# In[132]:
|
| 1835 |
+
|
| 1836 |
+
|
| 1837 |
+
df
|
| 1838 |
+
|
| 1839 |
+
|
| 1840 |
+
# # <p style="color: orange;">Document 8 Procédure de déroulement des stages facultatifs (CPE-IN-01-00)</p>
|
| 1841 |
+
|
| 1842 |
+
# In[134]:
|
| 1843 |
+
|
| 1844 |
+
|
| 1845 |
+
loader = WebBaseLoader(
|
| 1846 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/437/Proc%C3%A9dure-de-d%C3%A9roulement-des-stages-facultatif",),
|
| 1847 |
+
bs_kwargs=dict(
|
| 1848 |
+
parse_only=bs4.SoupStrainer(
|
| 1849 |
+
class_=("content")
|
| 1850 |
+
)
|
| 1851 |
+
),
|
| 1852 |
+
)
|
| 1853 |
+
Procédure_de_déroulement_des_stages_facultatifs = loader.load()
|
| 1854 |
+
|
| 1855 |
+
|
| 1856 |
+
# In[135]:
|
| 1857 |
+
|
| 1858 |
+
|
| 1859 |
+
Procédure_de_déroulement_des_stages_facultatifs = [
|
| 1860 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 1861 |
+
for doc in Procédure_de_déroulement_des_stages_facultatifs]
|
| 1862 |
+
Procédure_de_déroulement_des_stages_facultatifs
|
| 1863 |
+
|
| 1864 |
+
|
| 1865 |
+
# ## splitting doc 8 into chunks
|
| 1866 |
+
|
| 1867 |
+
# In[137]:
|
| 1868 |
+
|
| 1869 |
+
|
| 1870 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 1871 |
+
splits9 = text_splitter.split_documents( Procédure_de_déroulement_des_stages_facultatifs)
|
| 1872 |
+
|
| 1873 |
+
|
| 1874 |
+
# In[138]:
|
| 1875 |
+
|
| 1876 |
+
|
| 1877 |
+
splits9
|
| 1878 |
+
|
| 1879 |
+
|
| 1880 |
+
# In[139]:
|
| 1881 |
+
|
| 1882 |
+
|
| 1883 |
+
contents9= [doc.page_content for doc in splits9]
|
| 1884 |
+
metadata9 = [doc.metadata for doc in splits9]
|
| 1885 |
+
|
| 1886 |
+
|
| 1887 |
+
# In[140]:
|
| 1888 |
+
|
| 1889 |
+
|
| 1890 |
+
embeddings9 = embeddings_model.embed_documents(
|
| 1891 |
+
[doc.page_content for doc in splits9],
|
| 1892 |
+
# normalize_embeddings=True,
|
| 1893 |
+
# batch_size=256,
|
| 1894 |
+
# show_progress_bar=True
|
| 1895 |
+
)
|
| 1896 |
+
print(embeddings9)
|
| 1897 |
+
|
| 1898 |
+
|
| 1899 |
+
# In[141]:
|
| 1900 |
+
|
| 1901 |
+
|
| 1902 |
+
ids9 = [str(uuid.uuid4()) for _ in range(len(contents9))]
|
| 1903 |
+
|
| 1904 |
+
|
| 1905 |
+
# In[142]:
|
| 1906 |
+
|
| 1907 |
+
|
| 1908 |
+
data.add(
|
| 1909 |
+
documents=contents9,
|
| 1910 |
+
embeddings=embeddings9,
|
| 1911 |
+
metadatas=metadata9,
|
| 1912 |
+
ids=ids9
|
| 1913 |
+
)
|
| 1914 |
+
|
| 1915 |
+
|
| 1916 |
+
# In[143]:
|
| 1917 |
+
|
| 1918 |
+
|
| 1919 |
+
append_data(contents9, metadata9, embeddings9)
|
| 1920 |
+
|
| 1921 |
+
|
| 1922 |
+
# In[144]:
|
| 1923 |
+
|
| 1924 |
+
|
| 1925 |
+
df
|
| 1926 |
+
|
| 1927 |
+
|
| 1928 |
+
# # <p style="color: orange;"> Document 9 Procédure de déroulement des stages obligatoires (CPE-IN-02-00)</p>
|
| 1929 |
+
|
| 1930 |
+
# In[146]:
|
| 1931 |
+
|
| 1932 |
+
|
| 1933 |
+
loader = WebBaseLoader(
|
| 1934 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/75/Proc%C3%A9dure-de-d%C3%A9roulement-des-stages",),
|
| 1935 |
+
bs_kwargs=dict(
|
| 1936 |
+
parse_only=bs4.SoupStrainer(
|
| 1937 |
+
class_=("content")
|
| 1938 |
+
)
|
| 1939 |
+
),
|
| 1940 |
+
)
|
| 1941 |
+
Procédure_de_déroulement_des_stages_obligatoires = loader.load()
|
| 1942 |
+
|
| 1943 |
+
|
| 1944 |
+
# In[147]:
|
| 1945 |
+
|
| 1946 |
+
|
| 1947 |
+
Procédure_de_déroulement_des_stages_obligatoires = [
|
| 1948 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 1949 |
+
for doc in Procédure_de_déroulement_des_stages_obligatoires]
|
| 1950 |
+
Procédure_de_déroulement_des_stages_obligatoires
|
| 1951 |
+
|
| 1952 |
+
|
| 1953 |
+
# ## splitting doc 9 into chunks
|
| 1954 |
+
|
| 1955 |
+
# In[149]:
|
| 1956 |
+
|
| 1957 |
+
|
| 1958 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 1959 |
+
splits10= text_splitter.split_documents(Procédure_de_déroulement_des_stages_obligatoires)
|
| 1960 |
+
|
| 1961 |
+
|
| 1962 |
+
# In[150]:
|
| 1963 |
+
|
| 1964 |
+
|
| 1965 |
+
splits10
|
| 1966 |
+
|
| 1967 |
+
|
| 1968 |
+
# In[151]:
|
| 1969 |
+
|
| 1970 |
+
|
| 1971 |
+
contents10= [doc.page_content for doc in splits10]
|
| 1972 |
+
metadata10 = [doc.metadata for doc in splits10]
|
| 1973 |
+
|
| 1974 |
+
|
| 1975 |
+
# In[152]:
|
| 1976 |
+
|
| 1977 |
+
|
| 1978 |
+
embeddings10 = embeddings_model.embed_documents(
|
| 1979 |
+
[doc.page_content for doc in splits10],
|
| 1980 |
+
# normalize_embeddings=True,
|
| 1981 |
+
# batch_size=256,
|
| 1982 |
+
# show_progress_bar=True
|
| 1983 |
+
)
|
| 1984 |
+
print(embeddings10)
|
| 1985 |
+
|
| 1986 |
+
|
| 1987 |
+
# In[153]:
|
| 1988 |
+
|
| 1989 |
+
|
| 1990 |
+
ids10 = [str(uuid.uuid4()) for _ in range(len(contents10))]
|
| 1991 |
+
|
| 1992 |
+
|
| 1993 |
+
# In[154]:
|
| 1994 |
+
|
| 1995 |
+
|
| 1996 |
+
data.add(
|
| 1997 |
+
documents=contents10,
|
| 1998 |
+
embeddings=embeddings10,
|
| 1999 |
+
metadatas=metadata10,
|
| 2000 |
+
ids=ids10
|
| 2001 |
+
)
|
| 2002 |
+
|
| 2003 |
+
|
| 2004 |
+
# In[155]:
|
| 2005 |
+
|
| 2006 |
+
|
| 2007 |
+
append_data(contents10, metadata10, embeddings10)
|
| 2008 |
+
|
| 2009 |
+
|
| 2010 |
+
# In[156]:
|
| 2011 |
+
|
| 2012 |
+
|
| 2013 |
+
df
|
| 2014 |
+
|
| 2015 |
+
|
| 2016 |
+
# # <p style="color: orange;"> Document 10 Partenariat international</p>
|
| 2017 |
+
|
| 2018 |
+
# In[158]:
|
| 2019 |
+
|
| 2020 |
+
|
| 2021 |
+
loader = WebBaseLoader(
|
| 2022 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/9/Partenariat-international",),
|
| 2023 |
+
bs_kwargs=dict(
|
| 2024 |
+
parse_only=bs4.SoupStrainer(
|
| 2025 |
+
class_=("content")
|
| 2026 |
+
)
|
| 2027 |
+
),
|
| 2028 |
+
)
|
| 2029 |
+
Partenariat_international = loader.load()
|
| 2030 |
+
|
| 2031 |
+
|
| 2032 |
+
# In[159]:
|
| 2033 |
+
|
| 2034 |
+
|
| 2035 |
+
Partenariat_international = [
|
| 2036 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 2037 |
+
for doc in Partenariat_international]
|
| 2038 |
+
Partenariat_international
|
| 2039 |
+
|
| 2040 |
+
|
| 2041 |
+
# ## splitting doc 10 into chunks
|
| 2042 |
+
|
| 2043 |
+
# In[161]:
|
| 2044 |
+
|
| 2045 |
+
|
| 2046 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 2047 |
+
splits11 = text_splitter.split_documents(Partenariat_international)
|
| 2048 |
+
|
| 2049 |
+
|
| 2050 |
+
# In[162]:
|
| 2051 |
+
|
| 2052 |
+
|
| 2053 |
+
splits11
|
| 2054 |
+
|
| 2055 |
+
|
| 2056 |
+
# In[163]:
|
| 2057 |
+
|
| 2058 |
+
|
| 2059 |
+
contents11= [doc.page_content for doc in splits11]
|
| 2060 |
+
metadata11 = [doc.metadata for doc in splits11]
|
| 2061 |
+
|
| 2062 |
+
|
| 2063 |
+
# In[164]:
|
| 2064 |
+
|
| 2065 |
+
|
| 2066 |
+
embeddings11 = embeddings_model.embed_documents(
|
| 2067 |
+
[doc.page_content for doc in splits11],
|
| 2068 |
+
# normalize_embeddings=True,
|
| 2069 |
+
# batch_size=256,
|
| 2070 |
+
# show_progress_bar=True
|
| 2071 |
+
)
|
| 2072 |
+
print(embeddings11)
|
| 2073 |
+
|
| 2074 |
+
|
| 2075 |
+
# In[165]:
|
| 2076 |
+
|
| 2077 |
+
|
| 2078 |
+
ids11 = [str(uuid.uuid4()) for _ in range(len(contents11))]
|
| 2079 |
+
|
| 2080 |
+
|
| 2081 |
+
# In[166]:
|
| 2082 |
+
|
| 2083 |
+
|
| 2084 |
+
data.add(
|
| 2085 |
+
documents=contents11,
|
| 2086 |
+
embeddings=embeddings11,
|
| 2087 |
+
metadatas=metadata11,
|
| 2088 |
+
ids=ids11
|
| 2089 |
+
)
|
| 2090 |
+
|
| 2091 |
+
|
| 2092 |
+
# In[167]:
|
| 2093 |
+
|
| 2094 |
+
|
| 2095 |
+
append_data(contents11, metadata11, embeddings11)
|
| 2096 |
+
|
| 2097 |
+
|
| 2098 |
+
# In[168]:
|
| 2099 |
+
|
| 2100 |
+
|
| 2101 |
+
df
|
| 2102 |
+
|
| 2103 |
+
|
| 2104 |
+
# # <p style="color: orange;"> Document 11 Communication</p>
|
| 2105 |
+
|
| 2106 |
+
# In[170]:
|
| 2107 |
+
|
| 2108 |
+
|
| 2109 |
+
loader = WebBaseLoader(
|
| 2110 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/140/Communication",),
|
| 2111 |
+
bs_kwargs=dict(
|
| 2112 |
+
parse_only=bs4.SoupStrainer(
|
| 2113 |
+
class_=("content")
|
| 2114 |
+
)
|
| 2115 |
+
),
|
| 2116 |
+
)
|
| 2117 |
+
Communication = loader.load()
|
| 2118 |
+
|
| 2119 |
+
|
| 2120 |
+
# In[171]:
|
| 2121 |
+
|
| 2122 |
+
|
| 2123 |
+
Communication = [
|
| 2124 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 2125 |
+
for doc in Communication]
|
| 2126 |
+
Communication
|
| 2127 |
+
|
| 2128 |
+
|
| 2129 |
+
# ## splitting doc 11 into chunks
|
| 2130 |
+
|
| 2131 |
+
# In[173]:
|
| 2132 |
+
|
| 2133 |
+
|
| 2134 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 2135 |
+
splits12 = text_splitter.split_documents(Communication)
|
| 2136 |
+
|
| 2137 |
+
|
| 2138 |
+
# In[174]:
|
| 2139 |
+
|
| 2140 |
+
|
| 2141 |
+
splits12
|
| 2142 |
+
|
| 2143 |
+
|
| 2144 |
+
# In[175]:
|
| 2145 |
+
|
| 2146 |
+
|
| 2147 |
+
contents12= [doc.page_content for doc in splits12]
|
| 2148 |
+
metadata12 = [doc.metadata for doc in splits12]
|
| 2149 |
+
|
| 2150 |
+
|
| 2151 |
+
# In[176]:
|
| 2152 |
+
|
| 2153 |
+
|
| 2154 |
+
embeddings12 = embeddings_model.embed_documents(
|
| 2155 |
+
[doc.page_content for doc in splits12],
|
| 2156 |
+
# normalize_embeddings=True,
|
| 2157 |
+
# batch_size=256,
|
| 2158 |
+
# show_progress_bar=True
|
| 2159 |
+
)
|
| 2160 |
+
print(embeddings12)
|
| 2161 |
+
|
| 2162 |
+
|
| 2163 |
+
# In[177]:
|
| 2164 |
+
|
| 2165 |
+
|
| 2166 |
+
ids12 = [str(uuid.uuid4()) for _ in range(len(contents12))]
|
| 2167 |
+
|
| 2168 |
+
|
| 2169 |
+
# In[178]:
|
| 2170 |
+
|
| 2171 |
+
|
| 2172 |
+
data.add(
|
| 2173 |
+
documents=contents12,
|
| 2174 |
+
embeddings=embeddings12,
|
| 2175 |
+
metadatas=metadata12,
|
| 2176 |
+
ids=ids12
|
| 2177 |
+
)
|
| 2178 |
+
|
| 2179 |
+
|
| 2180 |
+
# In[179]:
|
| 2181 |
+
|
| 2182 |
+
|
| 2183 |
+
append_data(contents12, metadata12, embeddings12)
|
| 2184 |
+
|
| 2185 |
+
|
| 2186 |
+
# In[180]:
|
| 2187 |
+
|
| 2188 |
+
|
| 2189 |
+
df
|
| 2190 |
+
|
| 2191 |
+
|
| 2192 |
+
# # <p style="color: orange;"> Document 12 Liens utiles</p>
|
| 2193 |
+
|
| 2194 |
+
# In[182]:
|
| 2195 |
+
|
| 2196 |
+
|
| 2197 |
+
loader = WebBaseLoader(
|
| 2198 |
+
web_paths=("https://fsm.rnu.tn/fra/links",),
|
| 2199 |
+
bs_kwargs=dict(
|
| 2200 |
+
parse_only=bs4.SoupStrainer(
|
| 2201 |
+
class_=("links_container","link_item","link_tags")
|
| 2202 |
+
)
|
| 2203 |
+
),
|
| 2204 |
+
)
|
| 2205 |
+
Liens_utiles = loader.load()
|
| 2206 |
+
|
| 2207 |
+
|
| 2208 |
+
# In[183]:
|
| 2209 |
+
|
| 2210 |
+
|
| 2211 |
+
Liens_utiles = [
|
| 2212 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 2213 |
+
for doc in Liens_utiles]
|
| 2214 |
+
Liens_utiles
|
| 2215 |
+
|
| 2216 |
+
|
| 2217 |
+
# ## splitting doc 12 into chunks
|
| 2218 |
+
|
| 2219 |
+
# In[185]:
|
| 2220 |
+
|
| 2221 |
+
|
| 2222 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 2223 |
+
splits13 = text_splitter.split_documents(Liens_utiles)
|
| 2224 |
+
|
| 2225 |
+
|
| 2226 |
+
# In[186]:
|
| 2227 |
+
|
| 2228 |
+
|
| 2229 |
+
splits13
|
| 2230 |
+
|
| 2231 |
+
|
| 2232 |
+
# In[187]:
|
| 2233 |
+
|
| 2234 |
+
|
| 2235 |
+
contents13= [doc.page_content for doc in splits13]
|
| 2236 |
+
metadata13 = [doc.metadata for doc in splits13]
|
| 2237 |
+
|
| 2238 |
+
|
| 2239 |
+
# In[188]:
|
| 2240 |
+
|
| 2241 |
+
|
| 2242 |
+
embeddings13 = embeddings_model.embed_documents(
|
| 2243 |
+
[doc.page_content for doc in splits13],
|
| 2244 |
+
# normalize_embeddings=True,
|
| 2245 |
+
# batch_size=256,
|
| 2246 |
+
# show_progress_bar=True
|
| 2247 |
+
)
|
| 2248 |
+
print(embeddings13)
|
| 2249 |
+
|
| 2250 |
+
|
| 2251 |
+
# In[189]:
|
| 2252 |
+
|
| 2253 |
+
|
| 2254 |
+
ids13 = [str(uuid.uuid4()) for _ in range(len(contents13))]
|
| 2255 |
+
|
| 2256 |
+
|
| 2257 |
+
# In[190]:
|
| 2258 |
+
|
| 2259 |
+
|
| 2260 |
+
data.add(
|
| 2261 |
+
documents=contents13,
|
| 2262 |
+
embeddings=embeddings13,
|
| 2263 |
+
metadatas=metadata13,
|
| 2264 |
+
ids=ids13
|
| 2265 |
+
)
|
| 2266 |
+
|
| 2267 |
+
|
| 2268 |
+
# In[191]:
|
| 2269 |
+
|
| 2270 |
+
|
| 2271 |
+
append_data(contents13, metadata13, embeddings13)
|
| 2272 |
+
|
| 2273 |
+
|
| 2274 |
+
# In[192]:
|
| 2275 |
+
|
| 2276 |
+
|
| 2277 |
+
df
|
| 2278 |
+
|
| 2279 |
+
|
| 2280 |
+
# # <p style="color: orange;"> Document 13 Departement Chimie </p>
|
| 2281 |
+
|
| 2282 |
+
# In[194]:
|
| 2283 |
+
|
| 2284 |
+
|
| 2285 |
+
loader = WebBaseLoader(
|
| 2286 |
+
web_paths=("https://fsm.rnu.tn/fra/departements/CH/4/chimie",),
|
| 2287 |
+
bs_kwargs=dict(
|
| 2288 |
+
parse_only=bs4.SoupStrainer(
|
| 2289 |
+
class_=("content")
|
| 2290 |
+
)
|
| 2291 |
+
),
|
| 2292 |
+
)
|
| 2293 |
+
Chimie = loader.load()
|
| 2294 |
+
|
| 2295 |
+
|
| 2296 |
+
# In[195]:
|
| 2297 |
+
|
| 2298 |
+
|
| 2299 |
+
Chimie = [
|
| 2300 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 2301 |
+
for doc in Chimie]
|
| 2302 |
+
Chimie
|
| 2303 |
+
|
| 2304 |
+
|
| 2305 |
+
# ## splitting doc 13 into chunks
|
| 2306 |
+
|
| 2307 |
+
# In[197]:
|
| 2308 |
+
|
| 2309 |
+
|
| 2310 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 2311 |
+
splits14 = text_splitter.split_documents(Chimie)
|
| 2312 |
+
|
| 2313 |
+
|
| 2314 |
+
# In[198]:
|
| 2315 |
+
|
| 2316 |
+
|
| 2317 |
+
splits14
|
| 2318 |
+
|
| 2319 |
+
|
| 2320 |
+
# In[199]:
|
| 2321 |
+
|
| 2322 |
+
|
| 2323 |
+
contents14= [doc.page_content for doc in splits14]
|
| 2324 |
+
metadata14 = [doc.metadata for doc in splits14]
|
| 2325 |
+
|
| 2326 |
+
|
| 2327 |
+
# In[200]:
|
| 2328 |
+
|
| 2329 |
+
|
| 2330 |
+
embeddings14 = embeddings_model.embed_documents(
|
| 2331 |
+
[doc.page_content for doc in splits14],
|
| 2332 |
+
# normalize_embeddings=True,
|
| 2333 |
+
# batch_size=256,
|
| 2334 |
+
# show_progress_bar=True
|
| 2335 |
+
)
|
| 2336 |
+
print(embeddings14)
|
| 2337 |
+
|
| 2338 |
+
|
| 2339 |
+
# In[201]:
|
| 2340 |
+
|
| 2341 |
+
|
| 2342 |
+
ids14 = [str(uuid.uuid4()) for _ in range(len(contents14))]
|
| 2343 |
+
|
| 2344 |
+
|
| 2345 |
+
# In[202]:
|
| 2346 |
+
|
| 2347 |
+
|
| 2348 |
+
data.add(
|
| 2349 |
+
documents=contents14,
|
| 2350 |
+
embeddings=embeddings14,
|
| 2351 |
+
metadatas=metadata14,
|
| 2352 |
+
ids=ids14
|
| 2353 |
+
)
|
| 2354 |
+
|
| 2355 |
+
|
| 2356 |
+
# In[203]:
|
| 2357 |
+
|
| 2358 |
+
|
| 2359 |
+
append_data(contents14, metadata14, embeddings14)
|
| 2360 |
+
|
| 2361 |
+
|
| 2362 |
+
# In[204]:
|
| 2363 |
+
|
| 2364 |
+
|
| 2365 |
+
df
|
| 2366 |
+
|
| 2367 |
+
|
| 2368 |
+
# # <p style="color: orange;"> Document 14 Departement Mathematique </p>
|
| 2369 |
+
|
| 2370 |
+
# In[206]:
|
| 2371 |
+
|
| 2372 |
+
|
| 2373 |
+
loader = WebBaseLoader(
|
| 2374 |
+
web_paths=("https://fsm.rnu.tn/fra/departements/M/1/mathematiques",),
|
| 2375 |
+
bs_kwargs=dict(
|
| 2376 |
+
parse_only=bs4.SoupStrainer(
|
| 2377 |
+
class_=("selectEnsFilter")
|
| 2378 |
+
)
|
| 2379 |
+
),
|
| 2380 |
+
)
|
| 2381 |
+
math = loader.load()
|
| 2382 |
+
|
| 2383 |
+
|
| 2384 |
+
# In[207]:
|
| 2385 |
+
|
| 2386 |
+
|
| 2387 |
+
math = [
|
| 2388 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 2389 |
+
for doc in math]
|
| 2390 |
+
math
|
| 2391 |
+
|
| 2392 |
+
|
| 2393 |
+
# ## splitting doc 14 into chunks
|
| 2394 |
+
|
| 2395 |
+
# In[209]:
|
| 2396 |
+
|
| 2397 |
+
|
| 2398 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 2399 |
+
splits15 = text_splitter.split_documents(math)
|
| 2400 |
+
|
| 2401 |
+
|
| 2402 |
+
# In[210]:
|
| 2403 |
+
|
| 2404 |
+
|
| 2405 |
+
splits15
|
| 2406 |
+
|
| 2407 |
+
|
| 2408 |
+
# In[211]:
|
| 2409 |
+
|
| 2410 |
+
|
| 2411 |
+
contents15= [doc.page_content for doc in splits15]
|
| 2412 |
+
metadata15 = [doc.metadata for doc in splits15]
|
| 2413 |
+
|
| 2414 |
+
|
| 2415 |
+
# In[212]:
|
| 2416 |
+
|
| 2417 |
+
|
| 2418 |
+
embeddings15 = embeddings_model.embed_documents(
|
| 2419 |
+
[doc.page_content for doc in splits15],
|
| 2420 |
+
# normalize_embeddings=True,
|
| 2421 |
+
# batch_size=256,
|
| 2422 |
+
# show_progress_bar=True
|
| 2423 |
+
)
|
| 2424 |
+
print(embeddings15)
|
| 2425 |
+
|
| 2426 |
+
|
| 2427 |
+
# In[213]:
|
| 2428 |
+
|
| 2429 |
+
|
| 2430 |
+
ids15 = [str(uuid.uuid4()) for _ in range(len(contents15))]
|
| 2431 |
+
|
| 2432 |
+
|
| 2433 |
+
# In[214]:
|
| 2434 |
+
|
| 2435 |
+
|
| 2436 |
+
data.add(
|
| 2437 |
+
documents=contents15,
|
| 2438 |
+
embeddings=embeddings15,
|
| 2439 |
+
metadatas=metadata15,
|
| 2440 |
+
ids=ids15
|
| 2441 |
+
)
|
| 2442 |
+
|
| 2443 |
+
|
| 2444 |
+
# In[215]:
|
| 2445 |
+
|
| 2446 |
+
|
| 2447 |
+
append_data(contents15, metadata15, embeddings15)
|
| 2448 |
+
|
| 2449 |
+
|
| 2450 |
+
# In[216]:
|
| 2451 |
+
|
| 2452 |
+
|
| 2453 |
+
df
|
| 2454 |
+
|
| 2455 |
+
|
| 2456 |
+
# # <p style="color: orange;"> Document 15 Departement informatique </p>
|
| 2457 |
+
|
| 2458 |
+
# In[218]:
|
| 2459 |
+
|
| 2460 |
+
|
| 2461 |
+
loader = WebBaseLoader(
|
| 2462 |
+
web_paths=("https://fsm.rnu.tn/fra/departements/Info/2/informatique",),
|
| 2463 |
+
bs_kwargs=dict(
|
| 2464 |
+
parse_only=bs4.SoupStrainer(
|
| 2465 |
+
class_=("selectEnsFilter")
|
| 2466 |
+
)
|
| 2467 |
+
),
|
| 2468 |
+
)
|
| 2469 |
+
info = loader.load()
|
| 2470 |
+
|
| 2471 |
+
|
| 2472 |
+
# In[219]:
|
| 2473 |
+
|
| 2474 |
+
|
| 2475 |
+
info = [
|
| 2476 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 2477 |
+
for doc in info]
|
| 2478 |
+
info
|
| 2479 |
+
|
| 2480 |
+
|
| 2481 |
+
# ## splitting doc 15 into chunks
|
| 2482 |
+
|
| 2483 |
+
# In[221]:
|
| 2484 |
+
|
| 2485 |
+
|
| 2486 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 2487 |
+
splits16=text_splitter.split_documents(info)
|
| 2488 |
+
|
| 2489 |
+
|
| 2490 |
+
# In[222]:
|
| 2491 |
+
|
| 2492 |
+
|
| 2493 |
+
splits16
|
| 2494 |
+
|
| 2495 |
+
|
| 2496 |
+
# In[223]:
|
| 2497 |
+
|
| 2498 |
+
|
| 2499 |
+
contents16= [doc.page_content for doc in splits16]
|
| 2500 |
+
metadata16 = [doc.metadata for doc in splits16]
|
| 2501 |
+
|
| 2502 |
+
|
| 2503 |
+
# In[224]:
|
| 2504 |
+
|
| 2505 |
+
|
| 2506 |
+
embeddings16 = embeddings_model.embed_documents(
|
| 2507 |
+
[doc.page_content for doc in splits16],
|
| 2508 |
+
# normalize_embeddings=True,
|
| 2509 |
+
# batch_size=256,
|
| 2510 |
+
# show_progress_bar=True
|
| 2511 |
+
)
|
| 2512 |
+
print(embeddings16)
|
| 2513 |
+
|
| 2514 |
+
|
| 2515 |
+
# In[225]:
|
| 2516 |
+
|
| 2517 |
+
|
| 2518 |
+
ids16 = [str(uuid.uuid4()) for _ in range(len(contents16))]
|
| 2519 |
+
|
| 2520 |
+
|
| 2521 |
+
# In[226]:
|
| 2522 |
+
|
| 2523 |
+
|
| 2524 |
+
data.add(
|
| 2525 |
+
documents=contents16,
|
| 2526 |
+
embeddings=embeddings16,
|
| 2527 |
+
metadatas=metadata16,
|
| 2528 |
+
ids=ids16
|
| 2529 |
+
)
|
| 2530 |
+
|
| 2531 |
+
|
| 2532 |
+
# In[227]:
|
| 2533 |
+
|
| 2534 |
+
|
| 2535 |
+
append_data(contents16, metadata16, embeddings16)
|
| 2536 |
+
|
| 2537 |
+
|
| 2538 |
+
# In[228]:
|
| 2539 |
+
|
| 2540 |
+
|
| 2541 |
+
df
|
| 2542 |
+
|
| 2543 |
+
|
| 2544 |
+
# # <p style="color: orange;">Document 16 departement Physique </p>
|
| 2545 |
+
|
| 2546 |
+
# # Document 16 Departement 16
|
| 2547 |
+
|
| 2548 |
+
# In[231]:
|
| 2549 |
+
|
| 2550 |
+
|
| 2551 |
+
loader = WebBaseLoader(
|
| 2552 |
+
web_paths=("https://fsm.rnu.tn/fra/departements/PH/3/physique",),
|
| 2553 |
+
bs_kwargs=dict(
|
| 2554 |
+
parse_only=bs4.SoupStrainer(
|
| 2555 |
+
class_=("selectEnsFilter")
|
| 2556 |
+
)
|
| 2557 |
+
),
|
| 2558 |
+
)
|
| 2559 |
+
physique = loader.load()
|
| 2560 |
+
|
| 2561 |
+
|
| 2562 |
+
# In[232]:
|
| 2563 |
+
|
| 2564 |
+
|
| 2565 |
+
physique = [
|
| 2566 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 2567 |
+
for doc in physique]
|
| 2568 |
+
physique
|
| 2569 |
+
|
| 2570 |
+
|
| 2571 |
+
# ## splitting doc 16 into chunks
|
| 2572 |
+
|
| 2573 |
+
# In[234]:
|
| 2574 |
+
|
| 2575 |
+
|
| 2576 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 2577 |
+
splits17 = text_splitter.split_documents(physique)
|
| 2578 |
+
|
| 2579 |
+
|
| 2580 |
+
# In[235]:
|
| 2581 |
+
|
| 2582 |
+
|
| 2583 |
+
splits17
|
| 2584 |
+
|
| 2585 |
+
|
| 2586 |
+
# In[236]:
|
| 2587 |
+
|
| 2588 |
+
|
| 2589 |
+
contents17= [doc.page_content for doc in splits17]
|
| 2590 |
+
metadata17 = [doc.metadata for doc in splits17]
|
| 2591 |
+
|
| 2592 |
+
|
| 2593 |
+
# In[237]:
|
| 2594 |
+
|
| 2595 |
+
|
| 2596 |
+
embeddings17 = embeddings_model.embed_documents(
|
| 2597 |
+
[doc.page_content for doc in splits17],
|
| 2598 |
+
# normalize_embeddings=True,
|
| 2599 |
+
# batch_size=256,
|
| 2600 |
+
# show_progress_bar=True
|
| 2601 |
+
)
|
| 2602 |
+
print(embeddings17)
|
| 2603 |
+
|
| 2604 |
+
|
| 2605 |
+
# In[238]:
|
| 2606 |
+
|
| 2607 |
+
|
| 2608 |
+
ids17 = [str(uuid.uuid4()) for _ in range(len(contents17))]
|
| 2609 |
+
|
| 2610 |
+
|
| 2611 |
+
# In[239]:
|
| 2612 |
+
|
| 2613 |
+
|
| 2614 |
+
data.add(
|
| 2615 |
+
documents=contents17,
|
| 2616 |
+
embeddings=embeddings17,
|
| 2617 |
+
metadatas=metadata17,
|
| 2618 |
+
ids=ids17
|
| 2619 |
+
)
|
| 2620 |
+
|
| 2621 |
+
|
| 2622 |
+
# In[240]:
|
| 2623 |
+
|
| 2624 |
+
|
| 2625 |
+
append_data(contents17, metadata17, embeddings17)
|
| 2626 |
+
|
| 2627 |
+
|
| 2628 |
+
# In[241]:
|
| 2629 |
+
|
| 2630 |
+
|
| 2631 |
+
df
|
| 2632 |
+
|
| 2633 |
+
|
| 2634 |
+
# # <p style="color: orange;">Document 17 Enseignement Tronc Commun </p>
|
| 2635 |
+
|
| 2636 |
+
# In[243]:
|
| 2637 |
+
|
| 2638 |
+
|
| 2639 |
+
loader = WebBaseLoader(
|
| 2640 |
+
web_paths=("https://fsm.rnu.tn/fra/departements/ET/5/enseignement-tronc-commun",),
|
| 2641 |
+
bs_kwargs=dict(
|
| 2642 |
+
parse_only=bs4.SoupStrainer(
|
| 2643 |
+
class_=("content")
|
| 2644 |
+
)
|
| 2645 |
+
),
|
| 2646 |
+
)
|
| 2647 |
+
Enseignement_Tronc_Commun = loader.load()
|
| 2648 |
+
|
| 2649 |
+
|
| 2650 |
+
# In[244]:
|
| 2651 |
+
|
| 2652 |
+
|
| 2653 |
+
Enseignement_Tronc_Commun = [
|
| 2654 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 2655 |
+
for doc in Enseignement_Tronc_Commun]
|
| 2656 |
+
Enseignement_Tronc_Commun
|
| 2657 |
+
|
| 2658 |
+
|
| 2659 |
+
# ## splitting doc 17 into chunks
|
| 2660 |
+
|
| 2661 |
+
# In[246]:
|
| 2662 |
+
|
| 2663 |
+
|
| 2664 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 2665 |
+
splits18 = text_splitter.split_documents(Enseignement_Tronc_Commun)
|
| 2666 |
+
|
| 2667 |
+
|
| 2668 |
+
# In[247]:
|
| 2669 |
+
|
| 2670 |
+
|
| 2671 |
+
splits18
|
| 2672 |
+
|
| 2673 |
+
|
| 2674 |
+
# In[248]:
|
| 2675 |
+
|
| 2676 |
+
|
| 2677 |
+
contents18= [doc.page_content for doc in splits18]
|
| 2678 |
+
metadata18 = [doc.metadata for doc in splits18]
|
| 2679 |
+
|
| 2680 |
+
|
| 2681 |
+
# In[249]:
|
| 2682 |
+
|
| 2683 |
+
|
| 2684 |
+
embeddings18 = embeddings_model.embed_documents(
|
| 2685 |
+
[doc.page_content for doc in splits18],
|
| 2686 |
+
# normalize_embeddings=True,
|
| 2687 |
+
# batch_size=256,
|
| 2688 |
+
# show_progress_bar=True
|
| 2689 |
+
)
|
| 2690 |
+
print(embeddings18)
|
| 2691 |
+
|
| 2692 |
+
|
| 2693 |
+
# In[250]:
|
| 2694 |
+
|
| 2695 |
+
|
| 2696 |
+
ids18 = [str(uuid.uuid4()) for _ in range(len(contents18))]
|
| 2697 |
+
|
| 2698 |
+
|
| 2699 |
+
# In[251]:
|
| 2700 |
+
|
| 2701 |
+
|
| 2702 |
+
data.add(
|
| 2703 |
+
documents=contents18,
|
| 2704 |
+
embeddings=embeddings18,
|
| 2705 |
+
metadatas=metadata18,
|
| 2706 |
+
ids=ids18
|
| 2707 |
+
)
|
| 2708 |
+
|
| 2709 |
+
|
| 2710 |
+
# In[252]:
|
| 2711 |
+
|
| 2712 |
+
|
| 2713 |
+
append_data(contents18, metadata18, embeddings18)
|
| 2714 |
+
|
| 2715 |
+
|
| 2716 |
+
# In[253]:
|
| 2717 |
+
|
| 2718 |
+
|
| 2719 |
+
df
|
| 2720 |
+
|
| 2721 |
+
|
| 2722 |
+
# # <p style="color: orange;">Document 18 اخر بلاغ للتسجيل بالنسبة للسنة الجامعية </p>
|
| 2723 |
+
#
|
| 2724 |
+
|
| 2725 |
+
# In[255]:
|
| 2726 |
+
|
| 2727 |
+
|
| 2728 |
+
loader = WebBaseLoader(
|
| 2729 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/4712/%D8%A7%D8%AE%D8%B1-%D8%A8%D9%84%D8%A7%D8%BA-%D9%84%D9%84%D8%AA%D8%B3%D8%AC%D9%8A%D9%84-%D8%A8%D8%A7%D9%84%D9%86%D8%B3%D8%A8%D8%A9-%D9%84%D9%84%D8%B3%D9%86%D8%A9-%D8%A7%D9%84%D8%AC%D8%A7%D9%85%D8%B9%D9%8A%D8%A9-2024-2025",),
|
| 2730 |
+
bs_kwargs=dict(
|
| 2731 |
+
parse_only=bs4.SoupStrainer(
|
| 2732 |
+
class_=("content")
|
| 2733 |
+
)
|
| 2734 |
+
),
|
| 2735 |
+
)
|
| 2736 |
+
ekher_balegh = loader.load()
|
| 2737 |
+
|
| 2738 |
+
|
| 2739 |
+
# In[256]:
|
| 2740 |
+
|
| 2741 |
+
|
| 2742 |
+
ekher_balegh = [
|
| 2743 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 2744 |
+
for doc in ekher_balegh]
|
| 2745 |
+
ekher_balegh
|
| 2746 |
+
|
| 2747 |
+
|
| 2748 |
+
# ## splitting doc 18 into chunks
|
| 2749 |
+
|
| 2750 |
+
# In[258]:
|
| 2751 |
+
|
| 2752 |
+
|
| 2753 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 2754 |
+
splits19 = text_splitter.split_documents(ekher_balegh)
|
| 2755 |
+
|
| 2756 |
+
|
| 2757 |
+
# In[259]:
|
| 2758 |
+
|
| 2759 |
+
|
| 2760 |
+
splits19
|
| 2761 |
+
|
| 2762 |
+
|
| 2763 |
+
# In[260]:
|
| 2764 |
+
|
| 2765 |
+
|
| 2766 |
+
contents19= [doc.page_content for doc in splits19]
|
| 2767 |
+
metadata19 = [doc.metadata for doc in splits19]
|
| 2768 |
+
|
| 2769 |
+
|
| 2770 |
+
# In[261]:
|
| 2771 |
+
|
| 2772 |
+
|
| 2773 |
+
embeddings19 = embeddings_model.embed_documents(
|
| 2774 |
+
[doc.page_content for doc in splits19],
|
| 2775 |
+
# normalize_embeddings=True,
|
| 2776 |
+
# batch_size=256,
|
| 2777 |
+
# show_progress_bar=True
|
| 2778 |
+
)
|
| 2779 |
+
print(embeddings19)
|
| 2780 |
+
|
| 2781 |
+
|
| 2782 |
+
# In[262]:
|
| 2783 |
+
|
| 2784 |
+
|
| 2785 |
+
ids19 = [str(uuid.uuid4()) for _ in range(len(contents19))]
|
| 2786 |
+
|
| 2787 |
+
|
| 2788 |
+
# In[263]:
|
| 2789 |
+
|
| 2790 |
+
|
| 2791 |
+
data.add(
|
| 2792 |
+
documents=contents19,
|
| 2793 |
+
embeddings=embeddings19,
|
| 2794 |
+
metadatas=metadata19,
|
| 2795 |
+
ids=ids19
|
| 2796 |
+
)
|
| 2797 |
+
|
| 2798 |
+
|
| 2799 |
+
# In[264]:
|
| 2800 |
+
|
| 2801 |
+
|
| 2802 |
+
append_data(contents19, metadata19, embeddings19)
|
| 2803 |
+
|
| 2804 |
+
|
| 2805 |
+
# In[265]:
|
| 2806 |
+
|
| 2807 |
+
|
| 2808 |
+
df
|
| 2809 |
+
|
| 2810 |
+
|
| 2811 |
+
# # <p style="color: orange;">Documents 19 Comptes extranet des étudiants 2024-2025 </p>
|
| 2812 |
+
#
|
| 2813 |
+
|
| 2814 |
+
# In[267]:
|
| 2815 |
+
|
| 2816 |
+
|
| 2817 |
+
loader = WebBaseLoader(
|
| 2818 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/4673/comptes-extranet-des-etudiants-2024-2025",),
|
| 2819 |
+
bs_kwargs=dict(
|
| 2820 |
+
parse_only=bs4.SoupStrainer(
|
| 2821 |
+
class_=("content")
|
| 2822 |
+
)
|
| 2823 |
+
),
|
| 2824 |
+
)
|
| 2825 |
+
comptes_extranet_des_etudiants = loader.load()
|
| 2826 |
+
|
| 2827 |
+
|
| 2828 |
+
# In[268]:
|
| 2829 |
+
|
| 2830 |
+
|
| 2831 |
+
comptes_extranet_des_etudiants = [
|
| 2832 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 2833 |
+
for doc in comptes_extranet_des_etudiants]
|
| 2834 |
+
comptes_extranet_des_etudiants
|
| 2835 |
+
|
| 2836 |
+
|
| 2837 |
+
|
| 2838 |
+
# ## splitting doc 19 into chunks
|
| 2839 |
+
|
| 2840 |
+
# In[270]:
|
| 2841 |
+
|
| 2842 |
+
|
| 2843 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 2844 |
+
splits20 = text_splitter.split_documents(comptes_extranet_des_etudiants)
|
| 2845 |
+
|
| 2846 |
+
|
| 2847 |
+
# In[271]:
|
| 2848 |
+
|
| 2849 |
+
|
| 2850 |
+
splits20
|
| 2851 |
+
|
| 2852 |
+
|
| 2853 |
+
# In[272]:
|
| 2854 |
+
|
| 2855 |
+
|
| 2856 |
+
contents20= [doc.page_content for doc in splits20]
|
| 2857 |
+
metadata20 = [doc.metadata for doc in splits20]
|
| 2858 |
+
|
| 2859 |
+
|
| 2860 |
+
# In[273]:
|
| 2861 |
+
|
| 2862 |
+
|
| 2863 |
+
embeddings20 = embeddings_model.embed_documents(
|
| 2864 |
+
[doc.page_content for doc in splits20],
|
| 2865 |
+
# normalize_embeddings=True,
|
| 2866 |
+
# batch_size=256,
|
| 2867 |
+
# show_progress_bar=True
|
| 2868 |
+
)
|
| 2869 |
+
print(embeddings20)
|
| 2870 |
+
|
| 2871 |
+
|
| 2872 |
+
# In[274]:
|
| 2873 |
+
|
| 2874 |
+
|
| 2875 |
+
ids20 = [str(uuid.uuid4()) for _ in range(len(contents20))]
|
| 2876 |
+
|
| 2877 |
+
|
| 2878 |
+
# In[275]:
|
| 2879 |
+
|
| 2880 |
+
|
| 2881 |
+
data.add(
|
| 2882 |
+
documents=contents20,
|
| 2883 |
+
embeddings=embeddings20,
|
| 2884 |
+
metadatas=metadata20,
|
| 2885 |
+
ids=ids20
|
| 2886 |
+
)
|
| 2887 |
+
|
| 2888 |
+
|
| 2889 |
+
# In[276]:
|
| 2890 |
+
|
| 2891 |
+
|
| 2892 |
+
append_data(contents20, metadata20, embeddings20)
|
| 2893 |
+
|
| 2894 |
+
|
| 2895 |
+
# In[277]:
|
| 2896 |
+
|
| 2897 |
+
|
| 2898 |
+
df
|
| 2899 |
+
|
| 2900 |
+
|
| 2901 |
+
# # <p style="color: orange;"> Document 20 بلاغ الترسيم للسنة الجامعية </p>
|
| 2902 |
+
#
|
| 2903 |
+
|
| 2904 |
+
# In[279]:
|
| 2905 |
+
|
| 2906 |
+
|
| 2907 |
+
loader = WebBaseLoader(
|
| 2908 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/4395/%D8%A8%D9%84%D8%A7%D8%BA-%D8%A7%D9%84%D8%AA%D8%B1%D8%B3%D9%8A%D9%85-%D9%84%D9%84%D8%B3%D9%86%D8%A9-%D8%A7%D9%84%D8%AC%D8%A7%D9%85%D8%B9%D9%8A%D8%A9-2024-2025",),
|
| 2909 |
+
bs_kwargs=dict(
|
| 2910 |
+
parse_only=bs4.SoupStrainer(
|
| 2911 |
+
class_=("content")
|
| 2912 |
+
)
|
| 2913 |
+
),
|
| 2914 |
+
)
|
| 2915 |
+
balegh_tarsim = loader.load()
|
| 2916 |
+
|
| 2917 |
+
|
| 2918 |
+
# In[280]:
|
| 2919 |
+
|
| 2920 |
+
|
| 2921 |
+
comptes_extranet_des_etudiants = [
|
| 2922 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 2923 |
+
for doc in balegh_tarsim]
|
| 2924 |
+
balegh_tarsim
|
| 2925 |
+
|
| 2926 |
+
|
| 2927 |
+
|
| 2928 |
+
# ## splitting doc 20 into chunks
|
| 2929 |
+
|
| 2930 |
+
# In[282]:
|
| 2931 |
+
|
| 2932 |
+
|
| 2933 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 2934 |
+
splits21 = text_splitter.split_documents(balegh_tarsim)
|
| 2935 |
+
|
| 2936 |
+
|
| 2937 |
+
# In[283]:
|
| 2938 |
+
|
| 2939 |
+
|
| 2940 |
+
splits21
|
| 2941 |
+
|
| 2942 |
+
|
| 2943 |
+
# In[284]:
|
| 2944 |
+
|
| 2945 |
+
|
| 2946 |
+
contents21= [doc.page_content for doc in splits21]
|
| 2947 |
+
metadata21= [doc.metadata for doc in splits21]
|
| 2948 |
+
|
| 2949 |
+
|
| 2950 |
+
# In[285]:
|
| 2951 |
+
|
| 2952 |
+
|
| 2953 |
+
embeddings21= embeddings_model.embed_documents(
|
| 2954 |
+
[doc.page_content for doc in splits21],
|
| 2955 |
+
# normalize_embeddings=True,
|
| 2956 |
+
# batch_size=256,
|
| 2957 |
+
# show_progress_bar=True
|
| 2958 |
+
)
|
| 2959 |
+
print(embeddings21)
|
| 2960 |
+
|
| 2961 |
+
|
| 2962 |
+
# In[286]:
|
| 2963 |
+
|
| 2964 |
+
|
| 2965 |
+
ids21 = [str(uuid.uuid4()) for _ in range(len(contents21))]
|
| 2966 |
+
|
| 2967 |
+
|
| 2968 |
+
# In[287]:
|
| 2969 |
+
|
| 2970 |
+
|
| 2971 |
+
data.add(
|
| 2972 |
+
documents=contents21,
|
| 2973 |
+
embeddings=embeddings21,
|
| 2974 |
+
metadatas=metadata21,
|
| 2975 |
+
ids=ids21
|
| 2976 |
+
)
|
| 2977 |
+
|
| 2978 |
+
|
| 2979 |
+
# In[288]:
|
| 2980 |
+
|
| 2981 |
+
|
| 2982 |
+
append_data(contents21, metadata21, embeddings21)
|
| 2983 |
+
|
| 2984 |
+
|
| 2985 |
+
# In[289]:
|
| 2986 |
+
|
| 2987 |
+
|
| 2988 |
+
df
|
| 2989 |
+
|
| 2990 |
+
|
| 2991 |
+
# # <p style="color: orange;">Document 21 Fiche de renseignements des diplômés </p>
|
| 2992 |
+
#
|
| 2993 |
+
|
| 2994 |
+
# In[291]:
|
| 2995 |
+
|
| 2996 |
+
|
| 2997 |
+
loader = WebBaseLoader(
|
| 2998 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/138/Fiche-de-renseignements-des-dipl%C3%B4m%C3%A9s",),
|
| 2999 |
+
bs_kwargs=dict(
|
| 3000 |
+
parse_only=bs4.SoupStrainer(
|
| 3001 |
+
class_=("content")
|
| 3002 |
+
)
|
| 3003 |
+
),
|
| 3004 |
+
)
|
| 3005 |
+
Fiche_de_renseignements_des_diplome = loader.load()
|
| 3006 |
+
|
| 3007 |
+
|
| 3008 |
+
# In[292]:
|
| 3009 |
+
|
| 3010 |
+
|
| 3011 |
+
Fiche_de_renseignements_des_diplome = [
|
| 3012 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 3013 |
+
for doc in Fiche_de_renseignements_des_diplome]
|
| 3014 |
+
Fiche_de_renseignements_des_diplome
|
| 3015 |
+
|
| 3016 |
+
|
| 3017 |
+
# ## splitting doc 21 into chunks
|
| 3018 |
+
|
| 3019 |
+
# In[294]:
|
| 3020 |
+
|
| 3021 |
+
|
| 3022 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 3023 |
+
splits22 = text_splitter.split_documents(Fiche_de_renseignements_des_diplome)
|
| 3024 |
+
|
| 3025 |
+
|
| 3026 |
+
# In[295]:
|
| 3027 |
+
|
| 3028 |
+
|
| 3029 |
+
splits22
|
| 3030 |
+
|
| 3031 |
+
|
| 3032 |
+
# In[296]:
|
| 3033 |
+
|
| 3034 |
+
|
| 3035 |
+
contents22= [doc.page_content for doc in splits22]
|
| 3036 |
+
metadata22 = [doc.metadata for doc in splits22]
|
| 3037 |
+
|
| 3038 |
+
|
| 3039 |
+
# In[297]:
|
| 3040 |
+
|
| 3041 |
+
|
| 3042 |
+
embeddings22 = embeddings_model.embed_documents(
|
| 3043 |
+
[doc.page_content for doc in splits22],
|
| 3044 |
+
# normalize_embeddings=True,
|
| 3045 |
+
# batch_size=256,
|
| 3046 |
+
# show_progress_bar=True
|
| 3047 |
+
)
|
| 3048 |
+
print(embeddings22)
|
| 3049 |
+
|
| 3050 |
+
|
| 3051 |
+
# In[298]:
|
| 3052 |
+
|
| 3053 |
+
|
| 3054 |
+
ids22 = [str(uuid.uuid4()) for _ in range(len(contents22))]
|
| 3055 |
+
|
| 3056 |
+
|
| 3057 |
+
# In[299]:
|
| 3058 |
+
|
| 3059 |
+
|
| 3060 |
+
data.add(
|
| 3061 |
+
documents=contents22,
|
| 3062 |
+
embeddings=embeddings22,
|
| 3063 |
+
metadatas=metadata22,
|
| 3064 |
+
ids=ids22
|
| 3065 |
+
)
|
| 3066 |
+
|
| 3067 |
+
|
| 3068 |
+
# In[300]:
|
| 3069 |
+
|
| 3070 |
+
|
| 3071 |
+
append_data(contents22, metadata22, embeddings22)
|
| 3072 |
+
|
| 3073 |
+
|
| 3074 |
+
# In[301]:
|
| 3075 |
+
|
| 3076 |
+
|
| 3077 |
+
df
|
| 3078 |
+
|
| 3079 |
+
|
| 3080 |
+
# # <p style="color: orange;">Document 22 Loi de creation FSM </p>
|
| 3081 |
+
#
|
| 3082 |
+
|
| 3083 |
+
# In[303]:
|
| 3084 |
+
|
| 3085 |
+
|
| 3086 |
+
loader = WebBaseLoader(
|
| 3087 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/1/Loi-de-cr%C3%A9ation",),
|
| 3088 |
+
bs_kwargs=dict(
|
| 3089 |
+
parse_only=bs4.SoupStrainer(
|
| 3090 |
+
class_=("content")
|
| 3091 |
+
)
|
| 3092 |
+
),
|
| 3093 |
+
)
|
| 3094 |
+
loi_de_creation = loader.load()
|
| 3095 |
+
|
| 3096 |
+
|
| 3097 |
+
# In[304]:
|
| 3098 |
+
|
| 3099 |
+
|
| 3100 |
+
loi_de_creation = [
|
| 3101 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 3102 |
+
for doc in loi_de_creation]
|
| 3103 |
+
loi_de_creation
|
| 3104 |
+
|
| 3105 |
+
|
| 3106 |
+
# ## splitting doc 22 into chunks
|
| 3107 |
+
|
| 3108 |
+
# In[306]:
|
| 3109 |
+
|
| 3110 |
+
|
| 3111 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 3112 |
+
splits23 = text_splitter.split_documents(loi_de_creation)
|
| 3113 |
+
|
| 3114 |
+
|
| 3115 |
+
# In[307]:
|
| 3116 |
+
|
| 3117 |
+
|
| 3118 |
+
splits23
|
| 3119 |
+
|
| 3120 |
+
|
| 3121 |
+
# In[308]:
|
| 3122 |
+
|
| 3123 |
+
|
| 3124 |
+
contents23= [doc.page_content for doc in splits23]
|
| 3125 |
+
metadata23 = [doc.metadata for doc in splits23]
|
| 3126 |
+
|
| 3127 |
+
|
| 3128 |
+
# In[309]:
|
| 3129 |
+
|
| 3130 |
+
|
| 3131 |
+
embeddings23 = embeddings_model.embed_documents(
|
| 3132 |
+
[doc.page_content for doc in splits23],
|
| 3133 |
+
# normalize_embeddings=True,
|
| 3134 |
+
# batch_size=256,
|
| 3135 |
+
# show_progress_bar=True
|
| 3136 |
+
)
|
| 3137 |
+
print(embeddings23)
|
| 3138 |
+
|
| 3139 |
+
|
| 3140 |
+
# In[310]:
|
| 3141 |
+
|
| 3142 |
+
|
| 3143 |
+
ids23 = [str(uuid.uuid4()) for _ in range(len(contents23))]
|
| 3144 |
+
|
| 3145 |
+
|
| 3146 |
+
# In[311]:
|
| 3147 |
+
|
| 3148 |
+
|
| 3149 |
+
data.add(
|
| 3150 |
+
documents=contents23,
|
| 3151 |
+
embeddings=embeddings23,
|
| 3152 |
+
metadatas=metadata23,
|
| 3153 |
+
ids=ids23
|
| 3154 |
+
)
|
| 3155 |
+
|
| 3156 |
+
|
| 3157 |
+
# In[312]:
|
| 3158 |
+
|
| 3159 |
+
|
| 3160 |
+
append_data(contents23, metadata23, embeddings23)
|
| 3161 |
+
|
| 3162 |
+
|
| 3163 |
+
# In[313]:
|
| 3164 |
+
|
| 3165 |
+
|
| 3166 |
+
df
|
| 3167 |
+
|
| 3168 |
+
|
| 3169 |
+
# # <p style="color: orange;">Document 23 loi en chiffre </p>
|
| 3170 |
+
#
|
| 3171 |
+
|
| 3172 |
+
# In[315]:
|
| 3173 |
+
|
| 3174 |
+
|
| 3175 |
+
loader = WebBaseLoader(
|
| 3176 |
+
web_paths=("https://fsm.rnu.tn/fra/pages/3/En-chiffres",),
|
| 3177 |
+
bs_kwargs=dict(
|
| 3178 |
+
parse_only=bs4.SoupStrainer(
|
| 3179 |
+
class_=("content")
|
| 3180 |
+
)
|
| 3181 |
+
),
|
| 3182 |
+
)
|
| 3183 |
+
loi_en_chiffre = loader.load()
|
| 3184 |
+
|
| 3185 |
+
|
| 3186 |
+
# In[316]:
|
| 3187 |
+
|
| 3188 |
+
|
| 3189 |
+
loi_en_chiffre = [
|
| 3190 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 3191 |
+
for doc in loi_en_chiffre]
|
| 3192 |
+
loi_en_chiffre
|
| 3193 |
+
|
| 3194 |
+
|
| 3195 |
+
# ## splitting doc 23 into chunks
|
| 3196 |
+
|
| 3197 |
+
# In[318]:
|
| 3198 |
+
|
| 3199 |
+
|
| 3200 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 3201 |
+
splits24 = text_splitter.split_documents(loi_en_chiffre)
|
| 3202 |
+
|
| 3203 |
+
|
| 3204 |
+
# In[319]:
|
| 3205 |
+
|
| 3206 |
+
|
| 3207 |
+
splits24
|
| 3208 |
+
|
| 3209 |
+
|
| 3210 |
+
# In[320]:
|
| 3211 |
+
|
| 3212 |
+
|
| 3213 |
+
contents24= [doc.page_content for doc in splits24]
|
| 3214 |
+
metadata24 = [doc.metadata for doc in splits24]
|
| 3215 |
+
|
| 3216 |
+
|
| 3217 |
+
# In[321]:
|
| 3218 |
+
|
| 3219 |
+
|
| 3220 |
+
embeddings24 = embeddings_model.embed_documents(
|
| 3221 |
+
[doc.page_content for doc in splits24],
|
| 3222 |
+
# normalize_embeddings=True,
|
| 3223 |
+
# batch_size=256,
|
| 3224 |
+
# show_progress_bar=True
|
| 3225 |
+
)
|
| 3226 |
+
print(embeddings24)
|
| 3227 |
+
|
| 3228 |
+
|
| 3229 |
+
# In[322]:
|
| 3230 |
+
|
| 3231 |
+
|
| 3232 |
+
ids24 = [str(uuid.uuid4()) for _ in range(len(contents24))]
|
| 3233 |
+
|
| 3234 |
+
|
| 3235 |
+
# In[323]:
|
| 3236 |
+
|
| 3237 |
+
|
| 3238 |
+
data.add(
|
| 3239 |
+
documents=contents24,
|
| 3240 |
+
embeddings=embeddings24,
|
| 3241 |
+
metadatas=metadata24,
|
| 3242 |
+
ids=ids24
|
| 3243 |
+
)
|
| 3244 |
+
|
| 3245 |
+
|
| 3246 |
+
# In[324]:
|
| 3247 |
+
|
| 3248 |
+
|
| 3249 |
+
append_data(contents24, metadata24, embeddings24)
|
| 3250 |
+
|
| 3251 |
+
|
| 3252 |
+
# In[325]:
|
| 3253 |
+
|
| 3254 |
+
|
| 3255 |
+
df
|
| 3256 |
+
|
| 3257 |
+
|
| 3258 |
+
# # LICENCE
|
| 3259 |
+
|
| 3260 |
+
# # <p style="color: orange;">Document 24 PARCOURS LMD Mathématiques Appliquées</p>
|
| 3261 |
+
#
|
| 3262 |
+
|
| 3263 |
+
# In[328]:
|
| 3264 |
+
|
| 3265 |
+
|
| 3266 |
+
loader = WebBaseLoader(
|
| 3267 |
+
web_paths=("http://www.parcours-lmd.salima.tn/listeueetab.php?parc=ABhRHFxzAmNUZVIoBj4ENQYgX2sBPA==&etab=VjJQYQk7",),
|
| 3268 |
+
bs_kwargs=dict(
|
| 3269 |
+
parse_only=bs4.SoupStrainer(
|
| 3270 |
+
class_=("center")
|
| 3271 |
+
)
|
| 3272 |
+
),
|
| 3273 |
+
)
|
| 3274 |
+
parcours_math_appli = loader.load()
|
| 3275 |
+
|
| 3276 |
+
|
| 3277 |
+
# In[329]:
|
| 3278 |
+
|
| 3279 |
+
|
| 3280 |
+
parcours_math_appli = [
|
| 3281 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 3282 |
+
for doc in parcours_math_appli]
|
| 3283 |
+
parcours_math_appli
|
| 3284 |
+
|
| 3285 |
+
|
| 3286 |
+
# ## splitting doc 24 into chunks
|
| 3287 |
+
|
| 3288 |
+
# In[331]:
|
| 3289 |
+
|
| 3290 |
+
|
| 3291 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 3292 |
+
splits25 = text_splitter.split_documents(parcours_math_appli)
|
| 3293 |
+
|
| 3294 |
+
|
| 3295 |
+
# In[332]:
|
| 3296 |
+
|
| 3297 |
+
|
| 3298 |
+
splits25
|
| 3299 |
+
|
| 3300 |
+
|
| 3301 |
+
# In[333]:
|
| 3302 |
+
|
| 3303 |
+
|
| 3304 |
+
contents25= [doc.page_content for doc in splits25]
|
| 3305 |
+
metadata25 = [doc.metadata for doc in splits25]
|
| 3306 |
+
|
| 3307 |
+
|
| 3308 |
+
# In[334]:
|
| 3309 |
+
|
| 3310 |
+
|
| 3311 |
+
embeddings25 = embeddings_model.embed_documents(
|
| 3312 |
+
[doc.page_content for doc in splits25],
|
| 3313 |
+
# normalize_embeddings=True,
|
| 3314 |
+
# batch_size=256,
|
| 3315 |
+
# show_progress_bar=True
|
| 3316 |
+
)
|
| 3317 |
+
print(embeddings25)
|
| 3318 |
+
|
| 3319 |
+
|
| 3320 |
+
# In[335]:
|
| 3321 |
+
|
| 3322 |
+
|
| 3323 |
+
ids25 = [str(uuid.uuid4()) for _ in range(len(contents25))]
|
| 3324 |
+
|
| 3325 |
+
|
| 3326 |
+
# In[336]:
|
| 3327 |
+
|
| 3328 |
+
|
| 3329 |
+
data.add(
|
| 3330 |
+
documents=contents25,
|
| 3331 |
+
embeddings=embeddings25,
|
| 3332 |
+
metadatas=metadata25,
|
| 3333 |
+
ids=ids25
|
| 3334 |
+
)
|
| 3335 |
+
|
| 3336 |
+
|
| 3337 |
+
# In[337]:
|
| 3338 |
+
|
| 3339 |
+
|
| 3340 |
+
append_data(contents25, metadata25, embeddings25)
|
| 3341 |
+
|
| 3342 |
+
|
| 3343 |
+
# In[338]:
|
| 3344 |
+
|
| 3345 |
+
|
| 3346 |
+
df
|
| 3347 |
+
|
| 3348 |
+
|
| 3349 |
+
# # <p style="color: orange;"> Document 25 parcours lmd Computer Science</p>
|
| 3350 |
+
#
|
| 3351 |
+
|
| 3352 |
+
# In[340]:
|
| 3353 |
+
|
| 3354 |
+
|
| 3355 |
+
loader = WebBaseLoader(
|
| 3356 |
+
web_paths=("http://www.parcours-lmd.salima.tn/listeueetab.php?parc=UkpTHlxzUzJXZlctDjJTYFZwDDI=&etab=VjJZaAg6",),
|
| 3357 |
+
bs_kwargs=dict(
|
| 3358 |
+
parse_only=bs4.SoupStrainer(
|
| 3359 |
+
class_=("center")
|
| 3360 |
+
)
|
| 3361 |
+
),
|
| 3362 |
+
)
|
| 3363 |
+
parcours_computer_science = loader.load()
|
| 3364 |
+
|
| 3365 |
+
|
| 3366 |
+
# In[341]:
|
| 3367 |
+
|
| 3368 |
+
|
| 3369 |
+
parcours_computer_science = [
|
| 3370 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 3371 |
+
for doc in parcours_computer_science]
|
| 3372 |
+
parcours_computer_science
|
| 3373 |
+
|
| 3374 |
+
|
| 3375 |
+
# ## splitting doc 25 into chunks
|
| 3376 |
+
|
| 3377 |
+
# In[343]:
|
| 3378 |
+
|
| 3379 |
+
|
| 3380 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 3381 |
+
splits26 = text_splitter.split_documents(parcours_computer_science)
|
| 3382 |
+
|
| 3383 |
+
|
| 3384 |
+
# In[344]:
|
| 3385 |
+
|
| 3386 |
+
|
| 3387 |
+
splits26
|
| 3388 |
+
|
| 3389 |
+
|
| 3390 |
+
# In[345]:
|
| 3391 |
+
|
| 3392 |
+
|
| 3393 |
+
contents26= [doc.page_content for doc in splits26]
|
| 3394 |
+
metadata26= [doc.metadata for doc in splits26]
|
| 3395 |
+
|
| 3396 |
+
|
| 3397 |
+
# In[346]:
|
| 3398 |
+
|
| 3399 |
+
|
| 3400 |
+
embeddings26 = embeddings_model.embed_documents(
|
| 3401 |
+
[doc.page_content for doc in splits26],
|
| 3402 |
+
# normalize_embeddings=True,
|
| 3403 |
+
# batch_size=256,
|
| 3404 |
+
# show_progress_bar=True
|
| 3405 |
+
)
|
| 3406 |
+
print(embeddings26)
|
| 3407 |
+
|
| 3408 |
+
|
| 3409 |
+
# In[347]:
|
| 3410 |
+
|
| 3411 |
+
|
| 3412 |
+
ids26 = [str(uuid.uuid4()) for _ in range(len(contents26))]
|
| 3413 |
+
|
| 3414 |
+
|
| 3415 |
+
# In[348]:
|
| 3416 |
+
|
| 3417 |
+
|
| 3418 |
+
data.add(
|
| 3419 |
+
documents=contents26,
|
| 3420 |
+
embeddings=embeddings26,
|
| 3421 |
+
metadatas=metadata26,
|
| 3422 |
+
ids=ids26
|
| 3423 |
+
)
|
| 3424 |
+
|
| 3425 |
+
|
| 3426 |
+
# In[349]:
|
| 3427 |
+
|
| 3428 |
+
|
| 3429 |
+
append_data(contents26, metadata26, embeddings26)
|
| 3430 |
+
|
| 3431 |
+
|
| 3432 |
+
# In[350]:
|
| 3433 |
+
|
| 3434 |
+
|
| 3435 |
+
df
|
| 3436 |
+
|
| 3437 |
+
|
| 3438 |
+
# # <p style="color: orange;"> Document 26 Parcours LMD Mesures et Instrumentation</p>
|
| 3439 |
+
#
|
| 3440 |
+
|
| 3441 |
+
# In[352]:
|
| 3442 |
+
|
| 3443 |
+
|
| 3444 |
+
loader = WebBaseLoader(
|
| 3445 |
+
web_paths=("http://www.parcours-lmd.salima.tn/listeueetab.php?parc=W0NXGlp1UjNWZwN5BzkHMVN1DzsBPA==&etab=BGBYaQw+",),
|
| 3446 |
+
bs_kwargs=dict(
|
| 3447 |
+
parse_only=bs4.SoupStrainer(
|
| 3448 |
+
class_=("center")
|
| 3449 |
+
)
|
| 3450 |
+
),
|
| 3451 |
+
)
|
| 3452 |
+
parcours_Mesures = loader.load()
|
| 3453 |
+
|
| 3454 |
+
|
| 3455 |
+
# In[353]:
|
| 3456 |
+
|
| 3457 |
+
|
| 3458 |
+
parcours_Mesures = [
|
| 3459 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 3460 |
+
for doc in parcours_Mesures]
|
| 3461 |
+
parcours_Mesures
|
| 3462 |
+
|
| 3463 |
+
|
| 3464 |
+
# ## spitting doc 26 inti chunks
|
| 3465 |
+
|
| 3466 |
+
# In[355]:
|
| 3467 |
+
|
| 3468 |
+
|
| 3469 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 3470 |
+
splits27 = text_splitter.split_documents(parcours_Mesures)
|
| 3471 |
+
|
| 3472 |
+
|
| 3473 |
+
# In[356]:
|
| 3474 |
+
|
| 3475 |
+
|
| 3476 |
+
splits27
|
| 3477 |
+
|
| 3478 |
+
|
| 3479 |
+
# In[357]:
|
| 3480 |
+
|
| 3481 |
+
|
| 3482 |
+
contents27= [doc.page_content for doc in splits27]
|
| 3483 |
+
metadata27= [doc.metadata for doc in splits27]
|
| 3484 |
+
|
| 3485 |
+
|
| 3486 |
+
# In[358]:
|
| 3487 |
+
|
| 3488 |
+
|
| 3489 |
+
embeddings27 = embeddings_model.embed_documents(
|
| 3490 |
+
[doc.page_content for doc in splits27],
|
| 3491 |
+
# normalize_embeddings=True,
|
| 3492 |
+
# batch_size=256,
|
| 3493 |
+
# show_progress_bar=True
|
| 3494 |
+
)
|
| 3495 |
+
print(embeddings27)
|
| 3496 |
+
|
| 3497 |
+
|
| 3498 |
+
# In[359]:
|
| 3499 |
+
|
| 3500 |
+
|
| 3501 |
+
ids27 = [str(uuid.uuid4()) for _ in range(len(contents27))]
|
| 3502 |
+
|
| 3503 |
+
|
| 3504 |
+
# In[360]:
|
| 3505 |
+
|
| 3506 |
+
|
| 3507 |
+
data.add(
|
| 3508 |
+
documents=contents27,
|
| 3509 |
+
embeddings=embeddings27,
|
| 3510 |
+
metadatas=metadata27,
|
| 3511 |
+
ids=ids27
|
| 3512 |
+
)
|
| 3513 |
+
|
| 3514 |
+
|
| 3515 |
+
# In[361]:
|
| 3516 |
+
|
| 3517 |
+
|
| 3518 |
+
append_data(contents27, metadata27, embeddings27)
|
| 3519 |
+
|
| 3520 |
+
|
| 3521 |
+
# In[362]:
|
| 3522 |
+
|
| 3523 |
+
|
| 3524 |
+
df
|
| 3525 |
+
|
| 3526 |
+
|
| 3527 |
+
# # <p style="color: orange;">Document 27 Parcours LMD Physique </p>
|
| 3528 |
+
#
|
| 3529 |
+
|
| 3530 |
+
# In[364]:
|
| 3531 |
|
|
|
|
| 3532 |
|
| 3533 |
+
loader = WebBaseLoader(
|
| 3534 |
+
web_paths=("http://www.parcours-lmd.salima.tn/listeueetab.php?parc=W0NZFFp1UjNcbVshDjAENlJ0X2tTbg==&etab=AWUDMl9t",),
|
| 3535 |
+
bs_kwargs=dict(
|
| 3536 |
+
parse_only=bs4.SoupStrainer(
|
| 3537 |
+
class_=("center")
|
| 3538 |
+
)
|
| 3539 |
+
),
|
| 3540 |
+
)
|
| 3541 |
+
parcours_physique = loader.load()
|
| 3542 |
+
|
| 3543 |
+
|
| 3544 |
+
# In[365]:
|
| 3545 |
+
|
| 3546 |
+
|
| 3547 |
+
parcours_physique = [
|
| 3548 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 3549 |
+
for doc in parcours_physique]
|
| 3550 |
+
parcours_physique
|
| 3551 |
+
|
| 3552 |
+
|
| 3553 |
+
# ## splitting doc 27 into chunks
|
| 3554 |
+
|
| 3555 |
+
# In[367]:
|
| 3556 |
+
|
| 3557 |
+
|
| 3558 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 3559 |
+
splits28 = text_splitter.split_documents(parcours_physique)
|
| 3560 |
+
|
| 3561 |
+
|
| 3562 |
+
# In[368]:
|
| 3563 |
+
|
| 3564 |
+
|
| 3565 |
+
splits28
|
| 3566 |
+
|
| 3567 |
+
|
| 3568 |
+
# In[369]:
|
| 3569 |
+
|
| 3570 |
+
|
| 3571 |
+
contents28= [doc.page_content for doc in splits28]
|
| 3572 |
+
metadata28= [doc.metadata for doc in splits28]
|
| 3573 |
+
|
| 3574 |
+
|
| 3575 |
+
# In[370]:
|
| 3576 |
+
|
| 3577 |
+
|
| 3578 |
+
embeddings28 = embeddings_model.embed_documents(
|
| 3579 |
+
[doc.page_content for doc in splits28],
|
| 3580 |
+
# normalize_embeddings=True,
|
| 3581 |
+
# batch_size=256,
|
| 3582 |
+
# show_progress_bar=True
|
| 3583 |
+
)
|
| 3584 |
+
print(embeddings28)
|
| 3585 |
+
|
| 3586 |
+
|
| 3587 |
+
# In[371]:
|
| 3588 |
+
|
| 3589 |
+
|
| 3590 |
+
ids28 = [str(uuid.uuid4()) for _ in range(len(contents28))]
|
| 3591 |
+
|
| 3592 |
+
|
| 3593 |
+
# In[372]:
|
| 3594 |
+
|
| 3595 |
+
|
| 3596 |
+
data.add(
|
| 3597 |
+
documents=contents28,
|
| 3598 |
+
embeddings=embeddings28,
|
| 3599 |
+
metadatas=metadata28,
|
| 3600 |
+
ids=ids28
|
| 3601 |
+
)
|
| 3602 |
+
|
| 3603 |
+
|
| 3604 |
+
# In[373]:
|
| 3605 |
+
|
| 3606 |
+
|
| 3607 |
+
append_data(contents28, metadata28, embeddings28)
|
| 3608 |
+
|
| 3609 |
+
|
| 3610 |
+
# In[374]:
|
| 3611 |
+
|
| 3612 |
+
|
| 3613 |
+
df
|
| 3614 |
+
|
| 3615 |
+
|
| 3616 |
+
# # <p style="color: orange;">Document 28 Parcours LMD chimie </p>
|
| 3617 |
+
#
|
| 3618 |
+
|
| 3619 |
+
# In[376]:
|
| 3620 |
+
|
| 3621 |
+
|
| 3622 |
+
loader = WebBaseLoader(
|
| 3623 |
+
web_paths=("http://www.parcours-lmd.salima.tn/listeueetab.php?parc=W0NYFV9wVDVcbQF7BzkKPQQiCz8HOg==&etab=B2NUZQAy",),
|
| 3624 |
+
bs_kwargs=dict(
|
| 3625 |
+
parse_only=bs4.SoupStrainer(
|
| 3626 |
+
class_=("center")
|
| 3627 |
+
)
|
| 3628 |
+
),
|
| 3629 |
+
)
|
| 3630 |
+
parcours_chimie = loader.load()
|
| 3631 |
+
|
| 3632 |
+
|
| 3633 |
+
# In[377]:
|
| 3634 |
+
|
| 3635 |
+
|
| 3636 |
+
parcours_chimie = [
|
| 3637 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 3638 |
+
for doc in parcours_chimie]
|
| 3639 |
+
parcours_chimie
|
| 3640 |
+
|
| 3641 |
+
|
| 3642 |
+
# ## splitting doc 28 into chunks
|
| 3643 |
+
|
| 3644 |
+
# In[379]:
|
| 3645 |
+
|
| 3646 |
+
|
| 3647 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 3648 |
+
splits29= text_splitter.split_documents(parcours_chimie)
|
| 3649 |
+
|
| 3650 |
+
|
| 3651 |
+
# In[380]:
|
| 3652 |
+
|
| 3653 |
+
|
| 3654 |
+
splits29
|
| 3655 |
+
|
| 3656 |
+
|
| 3657 |
+
# In[381]:
|
| 3658 |
+
|
| 3659 |
+
|
| 3660 |
+
contents29= [doc.page_content for doc in splits29]
|
| 3661 |
+
metadata29= [doc.metadata for doc in splits29]
|
| 3662 |
+
|
| 3663 |
+
|
| 3664 |
+
# In[382]:
|
| 3665 |
+
|
| 3666 |
+
|
| 3667 |
+
embeddings29 = embeddings_model.embed_documents(
|
| 3668 |
+
[doc.page_content for doc in splits29],
|
| 3669 |
+
# normalize_embeddings=True,
|
| 3670 |
+
# batch_size=256,
|
| 3671 |
+
# show_progress_bar=True
|
| 3672 |
+
)
|
| 3673 |
+
print(embeddings29)
|
| 3674 |
+
|
| 3675 |
+
|
| 3676 |
+
# In[383]:
|
| 3677 |
+
|
| 3678 |
+
|
| 3679 |
+
ids29 = [str(uuid.uuid4()) for _ in range(len(contents29))]
|
| 3680 |
+
|
| 3681 |
+
|
| 3682 |
+
# In[384]:
|
| 3683 |
+
|
| 3684 |
+
|
| 3685 |
+
data.add(
|
| 3686 |
+
documents=contents29,
|
| 3687 |
+
embeddings=embeddings29,
|
| 3688 |
+
metadatas=metadata29,
|
| 3689 |
+
ids=ids29
|
| 3690 |
+
)
|
| 3691 |
+
|
| 3692 |
+
|
| 3693 |
+
# In[385]:
|
| 3694 |
+
|
| 3695 |
+
|
| 3696 |
+
append_data(contents29, metadata29, embeddings29)
|
| 3697 |
+
|
| 3698 |
+
|
| 3699 |
+
# In[386]:
|
| 3700 |
+
|
| 3701 |
+
|
| 3702 |
+
df
|
| 3703 |
+
|
| 3704 |
+
|
| 3705 |
+
# # <p style="color: orange;"> Document 29 Parcours LMD Physique-Chimie</p>
|
| 3706 |
+
#
|
| 3707 |
+
|
| 3708 |
+
# In[388]:
|
| 3709 |
+
|
| 3710 |
+
|
| 3711 |
+
loader = WebBaseLoader(
|
| 3712 |
+
web_paths=("http://www.parcours-lmd.salima.tn/listeueetab.php?parc=Bh4HSlh3VTQGN1ctVWsAMVJ0DjA=&etab=VjJZaA0/",),
|
| 3713 |
+
bs_kwargs=dict(
|
| 3714 |
+
parse_only=bs4.SoupStrainer(
|
| 3715 |
+
class_=("center")
|
| 3716 |
+
)
|
| 3717 |
+
),
|
| 3718 |
+
)
|
| 3719 |
+
parcours_physique_chimie = loader.load()
|
| 3720 |
+
|
| 3721 |
+
|
| 3722 |
+
# In[389]:
|
| 3723 |
+
|
| 3724 |
+
|
| 3725 |
+
parcours_physique_chimie = [
|
| 3726 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 3727 |
+
for doc in parcours_physique_chimie]
|
| 3728 |
+
parcours_physique_chimie
|
| 3729 |
+
|
| 3730 |
+
|
| 3731 |
+
# ## splitting doc 29 into chunks
|
| 3732 |
+
|
| 3733 |
+
# In[391]:
|
| 3734 |
+
|
| 3735 |
+
|
| 3736 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 3737 |
+
splits30= text_splitter.split_documents(parcours_physique_chimie)
|
| 3738 |
+
|
| 3739 |
+
|
| 3740 |
+
# In[392]:
|
| 3741 |
+
|
| 3742 |
+
|
| 3743 |
+
splits30
|
| 3744 |
+
|
| 3745 |
+
|
| 3746 |
+
# In[393]:
|
| 3747 |
+
|
| 3748 |
+
|
| 3749 |
+
contents30= [doc.page_content for doc in splits30]
|
| 3750 |
+
metadata30= [doc.metadata for doc in splits30]
|
| 3751 |
+
|
| 3752 |
+
|
| 3753 |
+
# In[394]:
|
| 3754 |
+
|
| 3755 |
+
|
| 3756 |
+
embeddings30 = embeddings_model.embed_documents(
|
| 3757 |
+
[doc.page_content for doc in splits30],
|
| 3758 |
+
# normalize_embeddings=True,
|
| 3759 |
+
# batch_size=256,
|
| 3760 |
+
# show_progress_bar=True
|
| 3761 |
+
)
|
| 3762 |
+
print(embeddings30)
|
| 3763 |
+
|
| 3764 |
+
|
| 3765 |
+
# In[395]:
|
| 3766 |
+
|
| 3767 |
+
|
| 3768 |
+
ids30 = [str(uuid.uuid4()) for _ in range(len(contents30))]
|
| 3769 |
+
|
| 3770 |
+
|
| 3771 |
+
# In[396]:
|
| 3772 |
+
|
| 3773 |
+
|
| 3774 |
+
data.add(
|
| 3775 |
+
documents=contents30,
|
| 3776 |
+
embeddings=embeddings30,
|
| 3777 |
+
metadatas=metadata30,
|
| 3778 |
+
ids=ids30
|
| 3779 |
+
)
|
| 3780 |
+
|
| 3781 |
|
| 3782 |
+
# In[397]:
|
| 3783 |
+
|
| 3784 |
+
|
| 3785 |
+
append_data(contents30, metadata30, embeddings30)
|
| 3786 |
+
|
| 3787 |
+
|
| 3788 |
+
|
| 3789 |
+
|
| 3790 |
+
|
| 3791 |
+
df
|
| 3792 |
+
|
| 3793 |
+
|
| 3794 |
+
|
| 3795 |
+
|
| 3796 |
+
loader = WebBaseLoader(
|
| 3797 |
+
web_paths=("https://fsm.rnu.tn/fra/articles/1249/demande-de-diplomes",),
|
| 3798 |
+
bs_kwargs=dict(
|
| 3799 |
+
parse_only=bs4.SoupStrainer(
|
| 3800 |
+
class_=("content")
|
| 3801 |
+
)
|
| 3802 |
+
),
|
| 3803 |
+
)
|
| 3804 |
+
doc_demande_de_diplome = loader.load()
|
| 3805 |
+
|
| 3806 |
+
|
| 3807 |
+
# In[401]:
|
| 3808 |
+
|
| 3809 |
+
|
| 3810 |
+
doc_demande_de_diplome = [
|
| 3811 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 3812 |
+
for doc in doc_demande_de_diplome]
|
| 3813 |
+
doc_demande_de_diplome
|
| 3814 |
+
|
| 3815 |
+
|
| 3816 |
+
# ## splitting doc 30 into chunks
|
| 3817 |
+
|
| 3818 |
+
# In[403]:
|
| 3819 |
+
|
| 3820 |
+
|
| 3821 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 3822 |
+
splits31 = text_splitter.split_documents(doc_demande_de_diplome)
|
| 3823 |
+
|
| 3824 |
+
|
| 3825 |
+
# In[404]:
|
| 3826 |
+
|
| 3827 |
+
|
| 3828 |
+
splits31
|
| 3829 |
+
|
| 3830 |
+
|
| 3831 |
+
# In[405]:
|
| 3832 |
+
|
| 3833 |
+
|
| 3834 |
+
contents31= [doc.page_content for doc in splits31]
|
| 3835 |
+
metadata31= [doc.metadata for doc in splits31]
|
| 3836 |
+
|
| 3837 |
+
|
| 3838 |
+
# In[406]:
|
| 3839 |
+
|
| 3840 |
+
|
| 3841 |
+
embeddings31 = embeddings_model.embed_documents(
|
| 3842 |
+
[doc.page_content for doc in splits31],
|
| 3843 |
+
# normalize_embeddings=True,
|
| 3844 |
+
# batch_size=256,
|
| 3845 |
+
# show_progress_bar=True
|
| 3846 |
+
)
|
| 3847 |
+
print(embeddings31)
|
| 3848 |
+
|
| 3849 |
+
|
| 3850 |
+
# In[407]:
|
| 3851 |
+
|
| 3852 |
+
|
| 3853 |
+
ids31 = [str(uuid.uuid4()) for _ in range(len(contents31))]
|
| 3854 |
+
|
| 3855 |
+
|
| 3856 |
+
# In[408]:
|
| 3857 |
+
|
| 3858 |
+
|
| 3859 |
+
data.add(
|
| 3860 |
+
documents=contents31,
|
| 3861 |
+
embeddings=embeddings31,
|
| 3862 |
+
metadatas=metadata31,
|
| 3863 |
+
ids=ids31
|
| 3864 |
+
)
|
| 3865 |
+
|
| 3866 |
+
|
| 3867 |
+
# In[409]:
|
| 3868 |
+
|
| 3869 |
+
|
| 3870 |
+
append_data(contents31, metadata31, embeddings31)
|
| 3871 |
+
|
| 3872 |
+
|
| 3873 |
+
# In[410]:
|
| 3874 |
+
|
| 3875 |
+
|
| 3876 |
+
df
|
| 3877 |
+
|
| 3878 |
+
|
| 3879 |
+
# # <p style="color: orange;">Document 31 INFORMATION sur master rechereche mathematique </p>
|
| 3880 |
+
#
|
| 3881 |
+
|
| 3882 |
+
# In[412]:
|
| 3883 |
+
|
| 3884 |
+
|
| 3885 |
+
loader = WebBaseLoader(
|
| 3886 |
+
web_paths=("https://um.rnu.tn/fr/formations/formation-lmd/master/mat%C3%A8re-de-recherche-en-math%C3%A9matiques-fsm/",),
|
| 3887 |
+
bs_kwargs=dict(
|
| 3888 |
+
parse_only=bs4.SoupStrainer(
|
| 3889 |
+
class_=("single-post-content single-content")
|
| 3890 |
+
)
|
| 3891 |
+
),
|
| 3892 |
+
)
|
| 3893 |
+
info_supp_mastere_math = loader.load()
|
| 3894 |
+
|
| 3895 |
+
|
| 3896 |
+
# In[413]:
|
| 3897 |
+
|
| 3898 |
+
|
| 3899 |
+
info_supp_mastere_math = [
|
| 3900 |
+
Document(page_content=clean_text(doc.page_content), metadata=doc.metadata)
|
| 3901 |
+
for doc in info_supp_mastere_math]
|
| 3902 |
+
info_supp_mastere_math
|
| 3903 |
+
|
| 3904 |
+
|
| 3905 |
+
# ## spitting doc 31 into chunks
|
| 3906 |
+
|
| 3907 |
+
# In[415]:
|
| 3908 |
+
|
| 3909 |
+
|
| 3910 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100, separators=["\n\n", "\n", ".", " "])
|
| 3911 |
+
splits32 = text_splitter.split_documents(info_supp_mastere_math)
|
| 3912 |
+
|
| 3913 |
+
|
| 3914 |
+
# In[416]:
|
| 3915 |
+
|
| 3916 |
+
|
| 3917 |
+
splits32
|
| 3918 |
+
|
| 3919 |
+
|
| 3920 |
+
# In[417]:
|
| 3921 |
+
|
| 3922 |
+
|
| 3923 |
+
contents32= [doc.page_content for doc in splits32]
|
| 3924 |
+
metadata32 = [doc.metadata for doc in splits32]
|
| 3925 |
+
|
| 3926 |
+
|
| 3927 |
+
# In[418]:
|
| 3928 |
+
|
| 3929 |
+
|
| 3930 |
+
embeddings32 = embeddings_model.embed_documents(
|
| 3931 |
+
[doc.page_content for doc in splits32],
|
| 3932 |
+
# normalize_embeddings=True,
|
| 3933 |
+
# batch_size=256,
|
| 3934 |
+
# show_progress_bar=True
|
| 3935 |
+
)
|
| 3936 |
+
print(embeddings32)
|
| 3937 |
+
|
| 3938 |
+
|
| 3939 |
+
# In[419]:
|
| 3940 |
+
|
| 3941 |
+
|
| 3942 |
+
ids32 = [str(uuid.uuid4()) for _ in range(len(contents32))]
|
| 3943 |
+
|
| 3944 |
+
|
| 3945 |
+
# In[420]:
|
| 3946 |
+
|
| 3947 |
+
|
| 3948 |
+
data.add(
|
| 3949 |
+
documents=contents32,
|
| 3950 |
+
embeddings=embeddings32,
|
| 3951 |
+
metadatas=metadata32,
|
| 3952 |
+
ids=ids32
|
| 3953 |
+
)
|
| 3954 |
+
|
| 3955 |
+
|
| 3956 |
+
# In[421]:
|
| 3957 |
+
|
| 3958 |
+
|
| 3959 |
+
append_data(contents32, metadata32, embeddings32)
|
| 3960 |
+
|
| 3961 |
+
|
| 3962 |
+
|
| 3963 |
+
data = data.get(include=['embeddings'])
|
| 3964 |
+
print(data)
|
| 3965 |
+
|
| 3966 |
+
|
| 3967 |
+
# In[427]:
|
| 3968 |
+
|
| 3969 |
+
|
| 3970 |
+
if 'embeddings' in data:
|
| 3971 |
+
embeddings_array = np.array(data['embeddings'])
|
| 3972 |
+
print("Embeddings shape:", embeddings_array.shape)
|
| 3973 |
+
else:
|
| 3974 |
+
print("No embeddings found in vectorstore.")
|
| 3975 |
+
|
| 3976 |
+
|
| 3977 |
+
# In[428]:
|
| 3978 |
+
|
| 3979 |
+
|
| 3980 |
+
if embeddings_array.size > 0:
|
| 3981 |
+
pca = PCA(n_components=2)
|
| 3982 |
+
embeddings_2d = pca.fit_transform(embeddings_array)
|
| 3983 |
+
|
| 3984 |
+
# Plot embeddings
|
| 3985 |
+
plt.figure(figsize=(8, 6))
|
| 3986 |
+
plt.scatter(embeddings_2d[:, 0], embeddings_2d[:, 1], alpha=0.7)
|
| 3987 |
+
plt.xlabel("PCA 1")
|
| 3988 |
+
plt.ylabel("PCA 2")
|
| 3989 |
+
plt.title("2D Visualization of Embeddings")
|
| 3990 |
+
plt.show()
|
| 3991 |
+
else:
|
| 3992 |
+
print("No embeddings available for PCA visualization.")
|
| 3993 |
+
|
| 3994 |
+
|
| 3995 |
+
# # Manully testing to retrive 2st attempt just checking 👌
|
| 3996 |
+
|
| 3997 |
+
# In[430]:
|
| 3998 |
+
|
| 3999 |
+
|
| 4000 |
+
data = chroma_client.get_collection(name="my_dataaaa")
|
| 4001 |
+
|
| 4002 |
+
|
| 4003 |
+
# In[431]:
|
| 4004 |
+
|
| 4005 |
+
|
| 4006 |
+
query_embedding = embeddings_model.embed_query("Quelles sont les documents de stage obligatoire?")
|
| 4007 |
+
|
| 4008 |
+
results = data.query(
|
| 4009 |
+
query_embeddings=[query_embedding],
|
| 4010 |
+
n_results=50
|
| 4011 |
+
)
|
| 4012 |
+
|
| 4013 |
+
|
| 4014 |
+
# In[432]:
|
| 4015 |
+
|
| 4016 |
+
|
| 4017 |
+
results
|
| 4018 |
+
|
| 4019 |
+
|
| 4020 |
+
# In[783]:
|
| 4021 |
+
|
| 4022 |
+
|
| 4023 |
+
chroma_client = chromadb.PersistentClient(path="chroma_db")
|
| 4024 |
+
collections = chroma_client.list_collections()
|
| 4025 |
+
print("Available collections:", collections)
|
| 4026 |
+
if "my_dataaaa" in collections:
|
| 4027 |
+
collection = chroma_client.get_collection(name="my_dataaaa")
|
| 4028 |
+
print(" Successfully loaded collection:", collection)
|
| 4029 |
+
else:
|
| 4030 |
+
print("Collection 'my_dataaaa' does not exist.", collections)
|
| 4031 |
embeddings_model = HuggingFaceEmbeddings(model_name="HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5")
|
| 4032 |
|
| 4033 |
model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-large-mnli")
|
|
|
|
| 4039 |
result = classifier(text, candidate_labels=["question", "greeting", "small talk", "feedback", "thanks"])
|
| 4040 |
label = result["labels"][0]
|
| 4041 |
return label.lower()
|
| 4042 |
+
|
| 4043 |
+
chroma_db_path = "./chroma_db"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4044 |
chroma_client = chromadb.PersistentClient(path=chroma_db_path)
|
| 4045 |
|
| 4046 |
data = chroma_client.get_collection(name="my_dataaaa")
|
| 4047 |
vectorstore = Chroma(
|
| 4048 |
collection_name="my_dataaaa",
|
| 4049 |
+
persist_directory="./chroma_db",
|
| 4050 |
embedding_function=embeddings_model
|
| 4051 |
)
|
| 4052 |
|
|
|
|
| 4087 |
def format_docs(docs):
|
| 4088 |
return "\n\n".join(doc.page_content for doc in docs)
|
| 4089 |
|
| 4090 |
+
context = format_docs(docs)
|
| 4091 |
+
context
|
| 4092 |
|
| 4093 |
rag_chain = (
|
| 4094 |
{
|
|
|
|
| 4226 |
)
|
| 4227 |
gr.Markdown("© 2025 Esra Belhassen. All rights reserved")
|
| 4228 |
|
| 4229 |
+
chat.launch(share=True)
|
| 4230 |
|