essattv commited on
Commit
1c0b093
verified
1 Parent(s): 7e0df5a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -60
app.py CHANGED
@@ -1,64 +1,48 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+
4
+ # 艁adowanie polskiego modelu
5
+ model_name = "allegro/herbert-base-cased"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForCausalLM.from_pretrained(model_name)
8
+
9
+ def generate_response(prompt):
10
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
11
+ outputs = model.generate(
12
+ inputs,
13
+ max_length=150,
14
+ num_return_sequences=1,
15
+ do_sample=True,
16
+ temperature=0.7,
17
+ top_k=50,
18
+ top_p=0.95,
19
+ )
20
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
21
+
22
+ def chat(message, history):
23
+ # Formatowanie historii rozmowy
24
+ formatted_history = ""
25
+ if history:
26
+ for human, ai in history:
27
+ formatted_history += f"U偶ytkownik: {human}\nAI: {ai}\n"
28
+
29
+ # Tworzenie promptu
30
+ prompt = f"{formatted_history}U偶ytkownik: {message}\nAI:"
31
+
32
+ # Generowanie odpowiedzi
33
+ response = generate_response(prompt)
34
+
35
+ # Usuwanie powt贸rze艅 promptu z odpowiedzi
36
+ clean_response = response.replace(prompt, "").strip()
37
+ return clean_response
38
+
39
+ # Tworzenie interfejsu
 
 
 
 
 
 
40
  demo = gr.ChatInterface(
41
+ fn=chat,
42
+ title="Polski ChatAI",
43
+ description="Rozmawiaj ze mn膮 po polsku!",
44
+ examples=["Cze艣膰, jak si臋 masz?", "Opowiedz mi o Warszawie", "Co to jest sztuczna inteligencja?"],
45
+ theme="soft"
 
 
 
 
 
 
 
 
46
  )
47
 
48
+ demo.launch()