File size: 6,206 Bytes
5fe16b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import gradio as gr
import spaces
import os, torch, io
import json
import re
os.system("python -m unidic download")
import httpx
# print("Make sure you've downloaded unidic (python -m unidic download) for this WebUI to work.")
from melo.api import TTS
import tempfile
import wave
from pydub import AudioSegment
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    BitsAndBytesConfig,
)
from threading import Thread

from gradio_client import Client

# client = Client("eswardivi/AIO_Chat")
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16
)

model = AutoModelForCausalLM.from_pretrained(
    "NousResearch/Hermes-2-Pro-Llama-3-8B", quantization_config=quantization_config
)
tok = AutoTokenizer.from_pretrained("NousResearch/Hermes-2-Pro-Llama-3-8B",revision='8ab73a6800796d84448bc936db9bac5ad9f984ae')
terminators = [
    tok.eos_token_id,
    tok.convert_tokens_to_ids("<|eot_id|>")
]
def validate_url(url):
    try:
        response = httpx.get(url, timeout=60.0)
        response.raise_for_status()
        return response.text
    except httpx.RequestError as e:
        return f"An error occurred while requesting {url}: {str(e)}"
    except httpx.HTTPStatusError as e:
        return f"Error response {e.response.status_code} while requesting {url}"
    except Exception as e:
        return f"An unexpected error occurred: {str(e)}"

def fetch_text(url):
    print("Entered Webpage Extraction")
    prefix_url = "https://r.jina.ai/"
    full_url = prefix_url + url
    print(full_url)
    print("Exited Webpage Extraction")
    return validate_url(full_url)
    
@spaces.GPU(duration=100)
def synthesize(article_url,progress_audio=gr.Progress()):
    if not article_url.startswith("http://") and not article_url.startswith("https://"):
        return "URL must start with 'http://' or 'https://'",None

    text = fetch_text(article_url)
    if "Error" in text:
        return text, None

    device = "cuda" if torch.cuda.is_available() else "cpu"
    template = """
        {
            "conversation": [
                {"speaker": "", "text": ""},
                {"speaker": "", "text": ""}
            ]
        }
        """
    chat = []
    chat.append(
        {
            "role": "user",
            "content": text + """\n Convert the provided text into a short, informative podcast conversation between two experts. The tone should be professional and engaging. Please adhere to the following format and return only JSON:
    {
        "conversation": [
            {"speaker": "", "text": ""},
            {"speaker": "", "text": ""}
        ]
    }
    """,
        }
    )


    messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
    model_inputs = tok([messages], return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(
        tok, timeout=10.0, skip_prompt=True, skip_special_tokens=True
    )
    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        max_new_tokens=1024,
        do_sample=True,
        temperature=0.9,
        eos_token_id=terminators,
    )
    print("Entered Generation")
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    partial_text = ""
    for new_text in streamer:
        partial_text += new_text

    # print("Calling API")
    # result = client.predict(
	# 	f"{text} \n Convert the text as Elaborate Conversation between two people as Podcast.\nfollowing this template and return only JSON \n {template}",
	# 	0.9,	
	# 	True,	
	# 	1024,
	# 	api_name="/chat"
    # )
    # print("API Call Completed")
    pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
    json_match = re.search(pattern, partial_text)
    print("Exited Generation")
    if json_match:
        conversation=json_match.group()
    else:
        conversation = template
    print(partial_text)
    print(conversation)
    speed = 1.0
    models = {"EN": TTS(language="EN", device=device)}
    speakers = ["EN-Default", "EN-US"]
    combined_audio = AudioSegment.empty()

    conversation_dict = json.loads(conversation)
    for i, turn in enumerate(conversation_dict["conversation"]):
        bio = io.BytesIO()
        text = turn["text"]
        speaker = speakers[i % 2]
        speaker_id = models["EN"].hps.data.spk2id[speaker]
        models["EN"].tts_to_file(text, speaker_id, bio, speed=1.0, pbar=progress_audio.tqdm, format="wav")
        bio.seek(0)
        audio_segment = AudioSegment.from_file(bio, format="wav")
        combined_audio += audio_segment
    final_audio_path = "final.mp3"
    combined_audio.export(final_audio_path, format="mp3")
    return conversation, final_audio_path


with gr.Blocks(theme='gstaff/sketch') as demo:
    gr.Markdown("# Turn Any Article into a Podcast")
    gr.Markdown("## Easily convert articles from URLs into listenable audio podcasts.")
    gr.Markdown("### Instructions")
    gr.Markdown("""
    - **Step 1:** Paste the URL of the article you want to convert into the textbox.
    - **Step 2:** Click on "Podcastify" to generate the podcast.
    - **Step 3:** Listen to the podcast or view the conversation.
    """)
    gr.Markdown("""
    - View the code at [GitHub - NarrateIt](https://github.com/EswarDivi/NarrateIt).
    """)
    with gr.Group():
        text = gr.Textbox(label="Article Link")
        btn = gr.Button("Podcastify", variant="primary")
    with gr.Row():
        conv_display = gr.Textbox(label="Conversation", interactive=False)
        aud = gr.Audio(interactive=False)
    btn.click(synthesize, inputs=[text], outputs=[conv_display, aud])
    gr.Markdown("""
    Special thanks to:

    - [gstaff/sketch](https://huggingface.co/spaces/gstaff/sketch) for the Sketch Theme.
    - [mrfakename/MeloTTS](https://huggingface.co/spaces/mrfakename/MeloTTS) and [GitHub](https://github.com/myshell-ai/MeloTTS) for MeloTTS.
    - [Hermes-2-Pro-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B) for Function Calling Support.
    - [Jina AI](https://jina.ai/reader/) for the web page parsing.
    """)
demo.queue(api_open=True, default_concurrency_limit=10).launch(show_api=True,share=True)