from dataclasses import dataclass from typing import List, Tuple, Dict import os import re import httpx import json from openai import OpenAI import edge_tts import tempfile import wave from pydub import AudioSegment import base64 from pathlib import Path @dataclass class ConversationConfig: max_words: int = 3000 prefix_url: str = "https://r.jina.ai/" model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo" class URLToAudioConverter: def __init__(self, config: ConversationConfig, llm_api_key: str): self.config = config self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1") self.llm_out = None def fetch_text(self, url: str) -> str: if not url: raise ValueError("URL cannot be empty") full_url = f"{self.config.prefix_url}{url}" try: response = httpx.get(full_url, timeout=60.0) response.raise_for_status() return response.text except httpx.HTTPError as e: raise RuntimeError(f"Failed to fetch URL: {e}") def extract_conversation(self, text: str) -> Dict: if not text: raise ValueError("Input text cannot be empty") try: chat_completion = self.llm_client.chat.completions.create( messages=[{"role": "user", "content": self._build_prompt(text)}], model=self.config.model_name, ) pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}" json_match = re.search(pattern, chat_completion.choices[0].message.content) if not json_match: raise ValueError("No valid JSON found in response") return json.loads(json_match.group()) except Exception as e: raise RuntimeError(f"Failed to extract conversation: {e}") def _build_prompt(self, text: str) -> str: template = """ { "conversation": [ {"speaker": "", "text": ""}, {"speaker": "", "text": ""} ] } """ return ( f"{text}\nConvert the provided text into a short informative and crisp " f"podcast conversation between two experts. The tone should be " f"professional and engaging. Please adhere to the following " f"format and return the conversation in JSON:\n{template}" ) async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]: output_dir = Path(self._create_output_directory()) filenames = [] try: for i, turn in enumerate(conversation_json["conversation"]): filename = output_dir / f"output_{i}.wav" voice = voice_1 if i % 2 == 0 else voice_2 tmp_path, error = await self._generate_audio(turn["text"], voice) if error: raise RuntimeError(f"Text-to-speech failed: {error}") os.rename(tmp_path, filename) filenames.append(str(filename)) return filenames, str(output_dir) except Exception as e: raise RuntimeError(f"Failed to convert text to speech: {e}") async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, str]: if not text.strip(): return None, "Text cannot be empty" if not voice: return None, "Voice cannot be empty" voice_short_name = voice.split(" - ")[0] rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) return tmp_path, None def _create_output_directory(self) -> str: random_bytes = os.urandom(8) folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8") os.makedirs(folder_name, exist_ok=True) return folder_name def combine_audio_files(self, filenames: List[str], output_file: str) -> None: if not filenames: raise ValueError("No input files provided") try: audio_segments = [] for filename in filenames: audio_segment = AudioSegment.from_mp3(filename) audio_segments.append(audio_segment) combined = sum(audio_segments) combined.export(output_file, format="wav") for filename in filenames: os.remove(filename) except Exception as e: raise RuntimeError(f"Failed to combine audio files: {e}") async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> str: text = self.fetch_text(url) words = text.split() if len(words) > self.config.max_words: text = " ".join(words[: self.config.max_words]) conversation_json = self.extract_conversation(text) conversation_text = "\n".join( f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"] ) self.llm_out = conversation_json audio_files, folder_name = await self.text_to_speech( conversation_json, voice_1, voice_2 ) final_output = os.path.join(folder_name, "combined_output.wav") self.combine_audio_files(audio_files, final_output) return final_output,conversation_text