Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +184 -0
- preprocessed_geodata.xlsx +0 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#%%
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
|
| 6 |
+
df = pd.read_excel("preprocessed_geodata.xlsx")
|
| 7 |
+
def get_lat_lon(row):
|
| 8 |
+
row = eval(row['result_dadata'])[0]
|
| 9 |
+
lat = row['geo_lat']
|
| 10 |
+
lon = row['geo_lon']
|
| 11 |
+
adress = row['result']
|
| 12 |
+
|
| 13 |
+
return lat, lon, adress
|
| 14 |
+
|
| 15 |
+
def get_colors(row):
|
| 16 |
+
if row > 1200:
|
| 17 |
+
return 'red'
|
| 18 |
+
elif row <= 1200 and row > 800:
|
| 19 |
+
return 'blue'
|
| 20 |
+
elif row <= 800 and row > 400:
|
| 21 |
+
return 'yellow'
|
| 22 |
+
elif row <= 400 and row > 200:
|
| 23 |
+
return 'green'
|
| 24 |
+
elif row <= 200 and row > 100:
|
| 25 |
+
return 'purple'
|
| 26 |
+
elif row <= 100 and row > 30:
|
| 27 |
+
return 'orange'
|
| 28 |
+
else:
|
| 29 |
+
return 'black'
|
| 30 |
+
|
| 31 |
+
df[['lat', 'lon', 'adress']] = df.apply(get_lat_lon, axis=1, result_type='expand')
|
| 32 |
+
|
| 33 |
+
viz_df = df[['lpu_name','lat', 'lon', 'adress', 'Число разных элементов в столбце LETTER_ID']].copy()
|
| 34 |
+
viz_df[['lat','lon']] = viz_df[['lat','lon']].astype(float)
|
| 35 |
+
viz_df['colors'] = viz_df['Число разных элементов в столбце LETTER_ID'].apply(get_colors)
|
| 36 |
+
|
| 37 |
+
text_series ="Название клиники: "+ viz_df['lpu_name'] + "<br>" + "Адрес: " + viz_df["adress"] + "<br>" + "Количество гарантийных писем:" + viz_df['Число разных элементов в столбце LETTER_ID'].astype(str)
|
| 38 |
+
#%%
|
| 39 |
+
fig_bubbles_coords = go.Figure(data=go.Scattermapbox(
|
| 40 |
+
lat=viz_df['lat'],
|
| 41 |
+
lon=viz_df['lon'],
|
| 42 |
+
mode='markers',
|
| 43 |
+
marker=go.scattermapbox.Marker(
|
| 44 |
+
size=viz_df['Число разных элементов в столбце LETTER_ID'],
|
| 45 |
+
color='red',
|
| 46 |
+
sizemode='area',
|
| 47 |
+
sizeref=5,
|
| 48 |
+
opacity=0.6
|
| 49 |
+
),
|
| 50 |
+
text=text_series,
|
| 51 |
+
))
|
| 52 |
+
|
| 53 |
+
fig_bubbles_coords.update_layout(
|
| 54 |
+
mapbox_style='open-street-map',
|
| 55 |
+
autosize=True,
|
| 56 |
+
hovermode='closest',
|
| 57 |
+
showlegend=False,
|
| 58 |
+
mapbox=dict(
|
| 59 |
+
center=dict(lat=viz_df['lat'].mean(), lon=viz_df['lon'].mean()),
|
| 60 |
+
zoom=9
|
| 61 |
+
),
|
| 62 |
+
width=900,
|
| 63 |
+
height=900
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# fig_bubbles_coords.show()
|
| 67 |
+
#%%
|
| 68 |
+
fig_bubbles = go.Figure(data=go.Scattermapbox(
|
| 69 |
+
lat=viz_df['lat'],
|
| 70 |
+
lon=viz_df['lon'],
|
| 71 |
+
mode='markers',
|
| 72 |
+
marker=go.scattermapbox.Marker(
|
| 73 |
+
size=viz_df['Число разных элементов в столбце LETTER_ID'],
|
| 74 |
+
color='red',
|
| 75 |
+
sizemode='area',
|
| 76 |
+
sizeref=5,
|
| 77 |
+
opacity=0.6,
|
| 78 |
+
),
|
| 79 |
+
customdata=text_series,
|
| 80 |
+
))
|
| 81 |
+
|
| 82 |
+
fig_bubbles.update_layout(
|
| 83 |
+
mapbox_style='open-street-map',
|
| 84 |
+
autosize=True,
|
| 85 |
+
hovermode='closest',
|
| 86 |
+
showlegend=False,
|
| 87 |
+
mapbox=dict(
|
| 88 |
+
center=dict(lat=viz_df['lat'].mean(), lon=viz_df['lon'].mean()),
|
| 89 |
+
zoom=9
|
| 90 |
+
),
|
| 91 |
+
width=900,
|
| 92 |
+
height=900
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
fig_bubbles.update_traces(hovertemplate='<b>%{customdata}</b>')
|
| 96 |
+
|
| 97 |
+
# fig_bubbles.show()
|
| 98 |
+
#%%
|
| 99 |
+
fig_heatbar = go.Figure(data=go.Scattermapbox(
|
| 100 |
+
lat=viz_df['lat'],
|
| 101 |
+
lon=viz_df['lon'],
|
| 102 |
+
mode='markers',
|
| 103 |
+
marker=go.scattermapbox.Marker(
|
| 104 |
+
color=viz_df['Число разных элементов в столбце LETTER_ID'],
|
| 105 |
+
sizemode='area',
|
| 106 |
+
sizeref=5,
|
| 107 |
+
opacity=1,
|
| 108 |
+
colorscale='rdylbu', # Градиент цветов от светло-синего до темно-синего
|
| 109 |
+
colorbar=dict(title='Число разных элементов в столбце LETTER_ID')
|
| 110 |
+
),
|
| 111 |
+
customdata=text_series,
|
| 112 |
+
))
|
| 113 |
+
|
| 114 |
+
fig_heatbar.update_layout(
|
| 115 |
+
mapbox_style='open-street-map',
|
| 116 |
+
autosize=True,
|
| 117 |
+
hovermode='closest',
|
| 118 |
+
showlegend=False,
|
| 119 |
+
mapbox=dict(
|
| 120 |
+
center=dict(lat=viz_df['lat'].mean(), lon=viz_df['lon'].mean()),
|
| 121 |
+
zoom=9
|
| 122 |
+
),
|
| 123 |
+
width=900,
|
| 124 |
+
height=900
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
fig_heatbar.update_traces(hovertemplate='<b>%{customdata}</b>')
|
| 128 |
+
|
| 129 |
+
# fig_heatbar.show()
|
| 130 |
+
#%%
|
| 131 |
+
dct_colors = {'red':'больше 1200',
|
| 132 |
+
'blue':'1200-800',
|
| 133 |
+
'yellow':'800-400',
|
| 134 |
+
'green':'400-200',
|
| 135 |
+
'purple':'200-100',
|
| 136 |
+
'orange':'100-30',
|
| 137 |
+
'black':'меньше 30'}
|
| 138 |
+
colors = ['red', 'blue', 'yellow', 'green','purple','orange','black']
|
| 139 |
+
|
| 140 |
+
fig_colored = go.Figure()
|
| 141 |
+
|
| 142 |
+
for color in colors:
|
| 143 |
+
temp_df = viz_df[viz_df['colors'] == color]
|
| 144 |
+
text_series_temp = "Название клиники: "+ temp_df['lpu_name'] + "<br>" + "Адрес: " + temp_df["adress"] + "<br>" + "Количество гарантийных писем:" + temp_df['Число разных элементов в столбце LETTER_ID'].astype(str)
|
| 145 |
+
fig_colored.add_trace(go.Scattermapbox(
|
| 146 |
+
lat=temp_df['lat'],
|
| 147 |
+
lon=temp_df['lon'],
|
| 148 |
+
mode='markers',
|
| 149 |
+
marker=go.scattermapbox.Marker(
|
| 150 |
+
color=color,
|
| 151 |
+
sizemode='area',
|
| 152 |
+
sizeref=5,
|
| 153 |
+
opacity=1,
|
| 154 |
+
),
|
| 155 |
+
name=dct_colors[color],
|
| 156 |
+
customdata=text_series_temp,
|
| 157 |
+
))
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
fig_colored.update_layout(
|
| 161 |
+
mapbox_style='open-street-map',
|
| 162 |
+
autosize=True,
|
| 163 |
+
hovermode='closest',
|
| 164 |
+
showlegend=True,
|
| 165 |
+
mapbox=dict(
|
| 166 |
+
center=dict(lat=viz_df['lat'].mean(), lon=viz_df['lon'].mean()),
|
| 167 |
+
zoom=9
|
| 168 |
+
),
|
| 169 |
+
width=900,
|
| 170 |
+
height=900
|
| 171 |
+
)
|
| 172 |
+
fig_colored.update_traces(hovertemplate='<b>%{customdata}</b>')
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
# fig_colored.show()
|
| 176 |
+
# %%
|
| 177 |
+
viz_df = viz_df.rename(columns={"Число разных элементов в столбце LETTER_ID":"Число_ГП"})
|
| 178 |
+
#%%
|
| 179 |
+
st.dataframe(data=viz_df[['lpu_name', 'Число_ГП', 'adress']])
|
| 180 |
+
# st.plotly_chart(fig_bubbles_coords)
|
| 181 |
+
st.plotly_chart(fig_bubbles)
|
| 182 |
+
st.plotly_chart(fig_heatbar)
|
| 183 |
+
st.plotly_chart(fig_colored)
|
| 184 |
+
# st.table(df)
|
preprocessed_geodata.xlsx
ADDED
|
Binary file (130 kB). View file
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
pandas
|
| 3 |
+
matplotlib
|
| 4 |
+
seaborn
|
| 5 |
+
plotly
|
| 6 |
+
openpyxl
|