Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
-
#%%
|
2 |
import pandas as pd
|
3 |
import streamlit as st
|
4 |
import plotly.graph_objects as go
|
5 |
|
6 |
-
df = pd.read_excel("
|
7 |
def get_lat_lon(row):
|
8 |
row = eval(row['result_dadata'])[0]
|
9 |
lat = row['geo_lat']
|
@@ -12,26 +11,14 @@ def get_lat_lon(row):
|
|
12 |
|
13 |
return lat, lon, adress
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
dct_colors = {'red':'больше 6000',
|
19 |
-
'blue':'6000-3000',
|
20 |
-
'yellow':'3000-1000',
|
21 |
-
# 'green':'400-200',
|
22 |
-
# 'purple':'200-100',
|
23 |
-
# 'orange':'100-30',
|
24 |
-
'black':'меньше 1000'
|
25 |
-
}
|
26 |
-
|
27 |
def get_colors(row):
|
28 |
-
if row >
|
29 |
return 'red'
|
30 |
-
elif row <=
|
31 |
return 'blue'
|
32 |
-
elif row <=
|
33 |
return 'yellow'
|
34 |
-
# elif row <=
|
35 |
# return 'green'
|
36 |
# elif row <= 200 and row > 100:
|
37 |
# return 'purple'
|
@@ -41,22 +28,22 @@ def get_colors(row):
|
|
41 |
return 'black'
|
42 |
|
43 |
df[['lat', 'lon', 'adress']] = df.apply(get_lat_lon, axis=1, result_type='expand')
|
|
|
|
|
44 |
|
45 |
-
viz_df = df[['lpu_name','lat', 'lon', 'adress', 'count_gp']].copy()
|
46 |
viz_df[['lat','lon']] = viz_df[['lat','lon']].astype(float)
|
47 |
-
viz_df['colors'] = viz_df['
|
48 |
|
49 |
-
text_series ="Название клиники: "+ viz_df['lpu_name'] + "<br>" + "Адрес: " + viz_df["adress"] + "<br>" + "
|
50 |
-
#%%
|
51 |
fig_bubbles_coords = go.Figure(data=go.Scattermapbox(
|
52 |
lat=viz_df['lat'],
|
53 |
lon=viz_df['lon'],
|
54 |
mode='markers',
|
55 |
marker=go.scattermapbox.Marker(
|
56 |
-
size=viz_df['
|
57 |
color='red',
|
58 |
sizemode='area',
|
59 |
-
sizeref=
|
60 |
opacity=0.6
|
61 |
),
|
62 |
text=text_series,
|
@@ -75,14 +62,12 @@ fig_bubbles_coords.update_layout(
|
|
75 |
height=900
|
76 |
)
|
77 |
|
78 |
-
# fig_bubbles_coords.show()
|
79 |
-
#%%
|
80 |
fig_bubbles = go.Figure(data=go.Scattermapbox(
|
81 |
lat=viz_df['lat'],
|
82 |
lon=viz_df['lon'],
|
83 |
mode='markers',
|
84 |
marker=go.scattermapbox.Marker(
|
85 |
-
size=viz_df['
|
86 |
color='red',
|
87 |
sizemode='area',
|
88 |
sizeref=5,
|
@@ -106,19 +91,17 @@ fig_bubbles.update_layout(
|
|
106 |
|
107 |
fig_bubbles.update_traces(hovertemplate='<b>%{customdata}</b>')
|
108 |
|
109 |
-
# fig_bubbles.show()
|
110 |
-
#%%
|
111 |
fig_heatbar = go.Figure(data=go.Scattermapbox(
|
112 |
lat=viz_df['lat'],
|
113 |
lon=viz_df['lon'],
|
114 |
mode='markers',
|
115 |
marker=go.scattermapbox.Marker(
|
116 |
-
color=viz_df['
|
117 |
sizemode='area',
|
118 |
sizeref=5,
|
119 |
opacity=1,
|
120 |
colorscale='rdylbu', # Градиент цветов от светло-синего до темно-синего
|
121 |
-
colorbar=dict(title='
|
122 |
),
|
123 |
customdata=text_series,
|
124 |
))
|
@@ -138,29 +121,26 @@ fig_heatbar.update_layout(
|
|
138 |
|
139 |
fig_heatbar.update_traces(hovertemplate='<b>%{customdata}</b>')
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
# 'orange':'100-30',
|
149 |
-
'black':'меньше 1000'
|
150 |
-
}
|
151 |
colors = ['red',
|
152 |
-
'blue',
|
153 |
-
'yellow',
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
'black']
|
158 |
|
159 |
fig_colored = go.Figure()
|
160 |
|
161 |
for color in colors:
|
162 |
temp_df = viz_df[viz_df['colors'] == color]
|
163 |
-
text_series_temp = "Название клиники: "+ temp_df['lpu_name'] + "<br>" + "Адрес: " + temp_df["adress"] + "<br>" + "
|
164 |
fig_colored.add_trace(go.Scattermapbox(
|
165 |
lat=temp_df['lat'],
|
166 |
lon=temp_df['lon'],
|
@@ -190,14 +170,11 @@ fig_colored.update_layout(
|
|
190 |
)
|
191 |
fig_colored.update_traces(hovertemplate='<b>%{customdata}</b>')
|
192 |
|
|
|
193 |
|
194 |
-
|
195 |
-
# %%
|
196 |
-
viz_df = viz_df.rename(columns={"count_gp":"Число_ГП"})
|
197 |
-
#%%
|
198 |
-
st.dataframe(data=viz_df[['lpu_name', 'Число_ГП', 'adress']])
|
199 |
-
# st.plotly_chart(fig_bubbles_coords)
|
200 |
st.plotly_chart(fig_bubbles)
|
201 |
st.plotly_chart(fig_heatbar)
|
202 |
st.plotly_chart(fig_colored)
|
203 |
-
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import streamlit as st
|
3 |
import plotly.graph_objects as go
|
4 |
|
5 |
+
df = pd.read_excel("data/geo_data/result.xlsx")
|
6 |
def get_lat_lon(row):
|
7 |
row = eval(row['result_dadata'])[0]
|
8 |
lat = row['geo_lat']
|
|
|
11 |
|
12 |
return lat, lon, adress
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def get_colors(row):
|
15 |
+
if row > 10000:
|
16 |
return 'red'
|
17 |
+
elif row <= 10000 and row > 4000:
|
18 |
return 'blue'
|
19 |
+
elif row <= 4000 and row > 2000:
|
20 |
return 'yellow'
|
21 |
+
# elif row <= 2000 and row > 1000:
|
22 |
# return 'green'
|
23 |
# elif row <= 200 and row > 100:
|
24 |
# return 'purple'
|
|
|
28 |
return 'black'
|
29 |
|
30 |
df[['lat', 'lon', 'adress']] = df.apply(get_lat_lon, axis=1, result_type='expand')
|
31 |
+
viz_df = df[['lpu_name','lat', 'lon', 'adress', 'MT_SUM_RUR']].copy()
|
32 |
+
viz_df['MT_SUM_RUR'] = viz_df['MT_SUM_RUR']/1000
|
33 |
|
|
|
34 |
viz_df[['lat','lon']] = viz_df[['lat','lon']].astype(float)
|
35 |
+
viz_df['colors'] = viz_df['MT_SUM_RUR'].apply(get_colors)
|
36 |
|
37 |
+
text_series ="Название клиники: "+ viz_df['lpu_name'] + "<br>" + "Адрес: " + viz_df["adress"] + "<br>" + "Сумма:" + viz_df['MT_SUM_RUR'].astype(str) + " тыс.руб"
|
|
|
38 |
fig_bubbles_coords = go.Figure(data=go.Scattermapbox(
|
39 |
lat=viz_df['lat'],
|
40 |
lon=viz_df['lon'],
|
41 |
mode='markers',
|
42 |
marker=go.scattermapbox.Marker(
|
43 |
+
size=viz_df['MT_SUM_RUR'],
|
44 |
color='red',
|
45 |
sizemode='area',
|
46 |
+
sizeref=5,
|
47 |
opacity=0.6
|
48 |
),
|
49 |
text=text_series,
|
|
|
62 |
height=900
|
63 |
)
|
64 |
|
|
|
|
|
65 |
fig_bubbles = go.Figure(data=go.Scattermapbox(
|
66 |
lat=viz_df['lat'],
|
67 |
lon=viz_df['lon'],
|
68 |
mode='markers',
|
69 |
marker=go.scattermapbox.Marker(
|
70 |
+
size=viz_df['MT_SUM_RUR'],
|
71 |
color='red',
|
72 |
sizemode='area',
|
73 |
sizeref=5,
|
|
|
91 |
|
92 |
fig_bubbles.update_traces(hovertemplate='<b>%{customdata}</b>')
|
93 |
|
|
|
|
|
94 |
fig_heatbar = go.Figure(data=go.Scattermapbox(
|
95 |
lat=viz_df['lat'],
|
96 |
lon=viz_df['lon'],
|
97 |
mode='markers',
|
98 |
marker=go.scattermapbox.Marker(
|
99 |
+
color=viz_df['MT_SUM_RUR'],
|
100 |
sizemode='area',
|
101 |
sizeref=5,
|
102 |
opacity=1,
|
103 |
colorscale='rdylbu', # Градиент цветов от светло-синего до темно-синего
|
104 |
+
colorbar=dict(title='MT_SUM_RUR')
|
105 |
),
|
106 |
customdata=text_series,
|
107 |
))
|
|
|
121 |
|
122 |
fig_heatbar.update_traces(hovertemplate='<b>%{customdata}</b>')
|
123 |
|
124 |
+
dct_colors = {'red':'больше 10000',
|
125 |
+
'blue':'10000-4000',
|
126 |
+
'yellow':'4000-2000',
|
127 |
+
# 'green':'400-200',
|
128 |
+
# 'purple':'200-100',
|
129 |
+
# 'orange':'100-30',
|
130 |
+
'black':'меньше 2000'}
|
|
|
|
|
|
|
131 |
colors = ['red',
|
132 |
+
'blue',
|
133 |
+
'yellow',
|
134 |
+
# 'green',
|
135 |
+
# 'purple',
|
136 |
+
# 'orange',
|
137 |
'black']
|
138 |
|
139 |
fig_colored = go.Figure()
|
140 |
|
141 |
for color in colors:
|
142 |
temp_df = viz_df[viz_df['colors'] == color]
|
143 |
+
text_series_temp = "Название клиники: "+ temp_df['lpu_name'] + "<br>" + "Адрес: " + temp_df["adress"] + "<br>" + "Сумма: " + temp_df['MT_SUM_RUR'].astype(str) + " тыс.руб"
|
144 |
fig_colored.add_trace(go.Scattermapbox(
|
145 |
lat=temp_df['lat'],
|
146 |
lon=temp_df['lon'],
|
|
|
170 |
)
|
171 |
fig_colored.update_traces(hovertemplate='<b>%{customdata}</b>')
|
172 |
|
173 |
+
viz_df = viz_df.rename(columns={"MT_SUM_RUR":"Сумма"})
|
174 |
|
175 |
+
st.dataframe(data=viz_df[['lpu_name', 'Сумма', 'adress']])
|
|
|
|
|
|
|
|
|
|
|
176 |
st.plotly_chart(fig_bubbles)
|
177 |
st.plotly_chart(fig_heatbar)
|
178 |
st.plotly_chart(fig_colored)
|
179 |
+
|
180 |
+
# %%
|