Spaces:
Sleeping
Sleeping
add whisper
Browse files
app.py
CHANGED
|
@@ -4,55 +4,29 @@ import numpy as np
|
|
| 4 |
# import spaces #[uncomment to use ZeroGPU]
|
| 5 |
import torch
|
| 6 |
|
|
|
|
|
|
|
| 7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
-
model_repo_id = "
|
| 9 |
|
| 10 |
if torch.cuda.is_available():
|
| 11 |
torch_dtype = torch.float16
|
| 12 |
else:
|
| 13 |
torch_dtype = torch.float32
|
| 14 |
|
| 15 |
-
pipe =
|
| 16 |
-
pipe = pipe.to(device)
|
| 17 |
-
|
| 18 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
-
MAX_IMAGE_SIZE = 1024
|
| 20 |
-
|
| 21 |
|
| 22 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
| 23 |
def infer(
|
| 24 |
-
|
| 25 |
-
negative_prompt,
|
| 26 |
-
seed,
|
| 27 |
-
randomize_seed,
|
| 28 |
-
width,
|
| 29 |
-
height,
|
| 30 |
-
guidance_scale,
|
| 31 |
-
num_inference_steps,
|
| 32 |
-
progress=gr.Progress(track_tqdm=True),
|
| 33 |
):
|
| 34 |
-
|
| 35 |
-
seed = random.randint(0, MAX_SEED)
|
| 36 |
-
|
| 37 |
-
generator = torch.Generator().manual_seed(seed)
|
| 38 |
-
|
| 39 |
-
image = pipe(
|
| 40 |
-
prompt=prompt,
|
| 41 |
-
negative_prompt=negative_prompt,
|
| 42 |
-
guidance_scale=guidance_scale,
|
| 43 |
-
num_inference_steps=num_inference_steps,
|
| 44 |
-
width=width,
|
| 45 |
-
height=height,
|
| 46 |
-
generator=generator,
|
| 47 |
-
).images[0]
|
| 48 |
-
|
| 49 |
-
return image, seed
|
| 50 |
|
| 51 |
with gr.Blocks(css=css) as demo:
|
| 52 |
gr.Markdown(" # PhonoLearn")
|
| 53 |
input_audio = gr.Audio(
|
| 54 |
sources=["microphone", "upload"]
|
| 55 |
)
|
| 56 |
-
|
| 57 |
if __name__ == "__main__":
|
| 58 |
demo.launch()
|
|
|
|
| 4 |
# import spaces #[uncomment to use ZeroGPU]
|
| 5 |
import torch
|
| 6 |
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
model_repo_id = "openai/whisper-tiny"
|
| 11 |
|
| 12 |
if torch.cuda.is_available():
|
| 13 |
torch_dtype = torch.float16
|
| 14 |
else:
|
| 15 |
torch_dtype = torch.float32
|
| 16 |
|
| 17 |
+
pipe = pipeline(task="automatic-speech-recognition", model=model_repo_id, device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
| 20 |
def infer(
|
| 21 |
+
audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
):
|
| 23 |
+
return pipe(audio, generate_kwargs={'language': 'chinese'})['text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
with gr.Blocks(css=css) as demo:
|
| 26 |
gr.Markdown(" # PhonoLearn")
|
| 27 |
input_audio = gr.Audio(
|
| 28 |
sources=["microphone", "upload"]
|
| 29 |
)
|
| 30 |
+
|
| 31 |
if __name__ == "__main__":
|
| 32 |
demo.launch()
|