Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from classes import classes
|
2 |
+
import numpy as np
|
3 |
+
from sentence_transformers import SentenceTransformer, util
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
|
7 |
+
# Simple sentence transformer
|
8 |
+
model_checkpoint = 'sentence-transformers/paraphrase-distilroberta-base-v1'
|
9 |
+
model = SentenceTransformer(model_checkpoint)
|
10 |
+
|
11 |
+
# Predefined messages and their embeddings
|
12 |
+
classes_text = np.array(classes)
|
13 |
+
classes_embeddings = model.encode(classes_text, convert_to_numpy=True)
|
14 |
+
assert classes_embeddings.shape[0] == len(classes)
|
15 |
+
|
16 |
+
# Function to compare the embedding of the human chat/text message with the embeddings of the
|
17 |
+
# predefined messages
|
18 |
+
def convert(sentence_embedding: np.array, class_embeddings: np.array, top_n=5) -> np.array:
|
19 |
+
similarities = np.array(util.cos_sim(sentence_embedding, class_embeddings)).reshape(-1,)
|
20 |
+
top_n_indices = np.argsort(similarities)[::-1][0:top_n]
|
21 |
+
|
22 |
+
return top_n_indices
|
23 |
+
|
24 |
+
# Simple title and description for the app
|
25 |
+
st.title('JHG Chat Message Converter')
|
26 |
+
st.write('Converts human chat/text messages into predefined chat messages via a sentence transformer')
|
27 |
+
|
28 |
+
# Text box to enter a chat/text message
|
29 |
+
text = st.text_area('Enter chat message')
|
30 |
+
|
31 |
+
if text:
|
32 |
+
# Use the sentence transformer and "convert" function to display predicted, predefined messages
|
33 |
+
text_embedding = model.encode(text, convert_to_numpy=True)
|
34 |
+
indices = convert(text_embedding, classes_embeddings)
|
35 |
+
predicted_classes = classes_text[indices]
|
36 |
+
|
37 |
+
for converted_message in predicted_classes:
|
38 |
+
st.write(converted_message)
|